基于复杂网格的CFX-4和CFX-5 ROCOM试验场冷却剂混合数值模拟

T. Höhne
{"title":"基于复杂网格的CFX-4和CFX-5 ROCOM试验场冷却剂混合数值模拟","authors":"T. Höhne","doi":"10.59972/mg4zu1sr","DOIUrl":null,"url":null,"abstract":"The work was aimed at the numerical simulation of coolant mixing in the downcomer and the lower plenum of the Rossendorf test facility ROCOM. ROCOM is a 1:5 scale Plexiglas model of a German pressurised water reactor allowing conductivity measurements by wire mesh sensors and velocity measurements by LDA technique. The CFD calculations were carried out with the CFD-codes CFX-4 and CFX-5. In the case of stationary mixing, the maximum value of the averaged mixing scalar at the core inlet was found in the sector below the inlet nozzle, where the tracer was injected. The comparison of a very detailed mesh (CFX-5) and a mesh with simplifications and additional physical models (CFX-4) showed that, in the referred case, the use of these models is allowed. For turbulent flows CFX-4 and CFX-5 were validated in accordance with the Best Practice Guidelines and can be used in the reactor safety analysis. A better description of the mixing processes inside the RPV is the basis of a more realistic safety assessment.","PeriodicalId":183819,"journal":{"name":"NAFEMS International Journal of CFD Case Studies","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Coolant Mixing at the ROCOM Test Facility with CFX-4 and CFX-5 based on Complex Meshes\",\"authors\":\"T. Höhne\",\"doi\":\"10.59972/mg4zu1sr\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work was aimed at the numerical simulation of coolant mixing in the downcomer and the lower plenum of the Rossendorf test facility ROCOM. ROCOM is a 1:5 scale Plexiglas model of a German pressurised water reactor allowing conductivity measurements by wire mesh sensors and velocity measurements by LDA technique. The CFD calculations were carried out with the CFD-codes CFX-4 and CFX-5. In the case of stationary mixing, the maximum value of the averaged mixing scalar at the core inlet was found in the sector below the inlet nozzle, where the tracer was injected. The comparison of a very detailed mesh (CFX-5) and a mesh with simplifications and additional physical models (CFX-4) showed that, in the referred case, the use of these models is allowed. For turbulent flows CFX-4 and CFX-5 were validated in accordance with the Best Practice Guidelines and can be used in the reactor safety analysis. A better description of the mixing processes inside the RPV is the basis of a more realistic safety assessment.\",\"PeriodicalId\":183819,\"journal\":{\"name\":\"NAFEMS International Journal of CFD Case Studies\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFEMS International Journal of CFD Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59972/mg4zu1sr\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFEMS International Journal of CFD Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59972/mg4zu1sr","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对罗森道夫试验装置ROCOM的下风洞和下风洞内冷却剂混合进行了数值模拟。ROCOM是德国压水反应堆的1:5比例有机玻璃模型,允许通过钢丝网传感器测量电导率,并通过LDA技术测量速度。CFD计算采用CFD代码CFX-4和CFX-5进行。在静止混合的情况下,核心入口平均混合标量的最大值出现在入口喷嘴下方注入示踪剂的扇区。非常详细的网格(CFX-5)和带有简化和附加物理模型的网格(CFX-4)的比较表明,在上述情况下,这些模型的使用是允许的。对于湍流,CFX-4和CFX-5按照最佳实践指南进行了验证,可用于反应堆安全性分析。更好地描述RPV内部的混合过程是更现实的安全性评估的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Coolant Mixing at the ROCOM Test Facility with CFX-4 and CFX-5 based on Complex Meshes
The work was aimed at the numerical simulation of coolant mixing in the downcomer and the lower plenum of the Rossendorf test facility ROCOM. ROCOM is a 1:5 scale Plexiglas model of a German pressurised water reactor allowing conductivity measurements by wire mesh sensors and velocity measurements by LDA technique. The CFD calculations were carried out with the CFD-codes CFX-4 and CFX-5. In the case of stationary mixing, the maximum value of the averaged mixing scalar at the core inlet was found in the sector below the inlet nozzle, where the tracer was injected. The comparison of a very detailed mesh (CFX-5) and a mesh with simplifications and additional physical models (CFX-4) showed that, in the referred case, the use of these models is allowed. For turbulent flows CFX-4 and CFX-5 were validated in accordance with the Best Practice Guidelines and can be used in the reactor safety analysis. A better description of the mixing processes inside the RPV is the basis of a more realistic safety assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信