基于SVM的人行道除雪机行人检测系统

Yuta Sasaki, T. Emaru, Ankit A. Ravankar
{"title":"基于SVM的人行道除雪机行人检测系统","authors":"Yuta Sasaki, T. Emaru, Ankit A. Ravankar","doi":"10.1109/IEEECONF49454.2021.9382618","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel pedestrian detection system for sidewalk snow removing vehicles particularly for night driving scenarios. The information in front of the snowplow is obtained by clustering and classifying objects using LiDAR point clouds. A robust pedestrian detection and classification algorithm using the support vector machine(SVM) is proposed. We tested the system on an actual machine and the accuracy our method is verified by experiments.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SVM based Pedestrian Detection System for Sidewalk Snow Removing Machines\",\"authors\":\"Yuta Sasaki, T. Emaru, Ankit A. Ravankar\",\"doi\":\"10.1109/IEEECONF49454.2021.9382618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel pedestrian detection system for sidewalk snow removing vehicles particularly for night driving scenarios. The information in front of the snowplow is obtained by clustering and classifying objects using LiDAR point clouds. A robust pedestrian detection and classification algorithm using the support vector machine(SVM) is proposed. We tested the system on an actual machine and the accuracy our method is verified by experiments.\",\"PeriodicalId\":395378,\"journal\":{\"name\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF49454.2021.9382618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的行人检测系统,用于夜间行驶的人行道除雪车辆。利用激光雷达点云对目标进行聚类和分类,获得扫雪机前方的信息。提出了一种基于支持向量机的鲁棒行人检测与分类算法。在实际机器上对该系统进行了测试,实验验证了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM based Pedestrian Detection System for Sidewalk Snow Removing Machines
In this paper, we present a novel pedestrian detection system for sidewalk snow removing vehicles particularly for night driving scenarios. The information in front of the snowplow is obtained by clustering and classifying objects using LiDAR point clouds. A robust pedestrian detection and classification algorithm using the support vector machine(SVM) is proposed. We tested the system on an actual machine and the accuracy our method is verified by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信