基于粗糙熵覆盖划分约简的特征选择规则优化器

Tapan Chowdhury, S. Setua, Susanta Chakraborty
{"title":"基于粗糙熵覆盖划分约简的特征选择规则优化器","authors":"Tapan Chowdhury, S. Setua, Susanta Chakraborty","doi":"10.1109/C3IT.2015.7060193","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for optimizing the number of decision rules and select important features based on reduct. We compute the reduct using entropy value of conditional attribute then eradicates the redundant dataset, noisy features and uncertainty of dataset using coverage factor and generate optimized number of rules. Experimental results show that this approach achieves high data reduction with important feature selection as well as optimize the number of rules compared to earlier works.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel rules optimizer with feature selection using rough-entropy-coverage partitioning based reduci\",\"authors\":\"Tapan Chowdhury, S. Setua, Susanta Chakraborty\",\"doi\":\"10.1109/C3IT.2015.7060193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for optimizing the number of decision rules and select important features based on reduct. We compute the reduct using entropy value of conditional attribute then eradicates the redundant dataset, noisy features and uncertainty of dataset using coverage factor and generate optimized number of rules. Experimental results show that this approach achieves high data reduction with important feature selection as well as optimize the number of rules compared to earlier works.\",\"PeriodicalId\":402311,\"journal\":{\"name\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C3IT.2015.7060193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于约简的决策规则数量优化和重要特征选择的新方法。利用条件属性的熵值计算约简,然后利用覆盖因子去除数据集的冗余、噪声特征和不确定性,生成优化的规则数。实验结果表明,该方法通过重要的特征选择实现了高度的数据约简,并优化了规则的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel rules optimizer with feature selection using rough-entropy-coverage partitioning based reduci
This paper presents a novel approach for optimizing the number of decision rules and select important features based on reduct. We compute the reduct using entropy value of conditional attribute then eradicates the redundant dataset, noisy features and uncertainty of dataset using coverage factor and generate optimized number of rules. Experimental results show that this approach achieves high data reduction with important feature selection as well as optimize the number of rules compared to earlier works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信