确定拉格朗奇方法和牛顿方法中医治病人的最佳插值

Muhammad Julian, Lukita Ambarwati, Yudi Mahatma
{"title":"确定拉格朗奇方法和牛顿方法中医治病人的最佳插值","authors":"Muhammad Julian, Lukita Ambarwati, Yudi Mahatma","doi":"10.21009/jmt.4.1.2","DOIUrl":null,"url":null,"abstract":"Estimation is one method for approximation. The estimation method is the polynomial interpolation. Once of polynomial interpolation are Lagrange method and Newton Gregory method. In several references, the degrees of interpolation which is used on the Lagrange method or Newton Gregory method depends on the numbers of data. This paper was created to knowing the optimum degrees to interpolate 61 numbers of data. In this paper, points are determined to interpolate so that formed intervals of equal length. As for the degrees to be tested, namely degrees 2,4,5,10, and 20. Based on MAPE and MSE values for degree 2 are lower than degrees 4,5,10 and 20 in both methods so that the interpolation of the Lagrange and Newton Gregory degrees 2 is better than degrees 4,5,10, and 20.","PeriodicalId":299241,"journal":{"name":"JMT : Jurnal Matematika dan Terapan","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Penentuan Derajat Optimum Interpolasi pada Metode Lagrange dan Metode Newton Gregory dalam Mengestimasi Kasus Pasien Sembuh dari Covid-19 di Indonesia\",\"authors\":\"Muhammad Julian, Lukita Ambarwati, Yudi Mahatma\",\"doi\":\"10.21009/jmt.4.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation is one method for approximation. The estimation method is the polynomial interpolation. Once of polynomial interpolation are Lagrange method and Newton Gregory method. In several references, the degrees of interpolation which is used on the Lagrange method or Newton Gregory method depends on the numbers of data. This paper was created to knowing the optimum degrees to interpolate 61 numbers of data. In this paper, points are determined to interpolate so that formed intervals of equal length. As for the degrees to be tested, namely degrees 2,4,5,10, and 20. Based on MAPE and MSE values for degree 2 are lower than degrees 4,5,10 and 20 in both methods so that the interpolation of the Lagrange and Newton Gregory degrees 2 is better than degrees 4,5,10, and 20.\",\"PeriodicalId\":299241,\"journal\":{\"name\":\"JMT : Jurnal Matematika dan Terapan\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMT : Jurnal Matematika dan Terapan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21009/jmt.4.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMT : Jurnal Matematika dan Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21009/jmt.4.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

估计是逼近的一种方法。估计方法为多项式插值法。多项式插值的常用方法有拉格朗日法和牛顿格里高利法。在一些参考文献中,拉格朗日方法或牛顿格里高利方法上使用的插值程度取决于数据的数量。本文旨在了解61个数数据的最优插值度。本文确定插值点,使其形成等长的区间。至于要测试的度,即2、4、5、10和20度。基于MAPE和MSE,两种方法的2度插值值均小于4、5、10和20度,因此2度的Lagrange和Newton Gregory插值优于4、5、10和20度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penentuan Derajat Optimum Interpolasi pada Metode Lagrange dan Metode Newton Gregory dalam Mengestimasi Kasus Pasien Sembuh dari Covid-19 di Indonesia
Estimation is one method for approximation. The estimation method is the polynomial interpolation. Once of polynomial interpolation are Lagrange method and Newton Gregory method. In several references, the degrees of interpolation which is used on the Lagrange method or Newton Gregory method depends on the numbers of data. This paper was created to knowing the optimum degrees to interpolate 61 numbers of data. In this paper, points are determined to interpolate so that formed intervals of equal length. As for the degrees to be tested, namely degrees 2,4,5,10, and 20. Based on MAPE and MSE values for degree 2 are lower than degrees 4,5,10 and 20 in both methods so that the interpolation of the Lagrange and Newton Gregory degrees 2 is better than degrees 4,5,10, and 20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信