有限精度完全离散估值域上的矩阵- f5算法

Tristan Vaccon
{"title":"有限精度完全离散估值域上的矩阵- f5算法","authors":"Tristan Vaccon","doi":"10.1145/2608628.2608658","DOIUrl":null,"url":null,"abstract":"Let (<i>f</i><sub>1</sub>,..., <i>f</i><sub><i>s</i></sub>) ∈ Q<sub><i>p</i></sub> [<i>X</i><sub>1</sub>,..., <i>X</i><sub><i>n</i></sub>]<sup><i>s</i></sup> be a sequence of homogeneous polynomials with <i>p</i>-adic coefficients. Such system may happen, for example, in arithmetic geometry. Yet, since A<sub><i>p</i></sub> is not an effective field, classical algorithm does not apply.\n We provide a definition for an approximate Gröbner basis with respect to a monomial order <i>w</i>. We design a strategy to compute such a basis, when precision is enough and under the assumption that the input sequence is regular and the ideals ⟨<i>f</i><sub>1</sub>,..., <i>f</i><sub><i>i</i></sub>⟩ are weakly-<i>w</i>-ideals. The conjecture of Moreno-Socias states that for the grevlex ordering, such sequences are generic.\n Two variants of that strategy are available, depending on whether one lean more on precision or time-complexity. For the analysis of these algorithms, we study the loss of precision of the Gauss row-echelon algorithm, and apply it to an adapted Matrix-F5 algorithm. Numerical examples are provided.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Matrix-F5 algorithms over finite-precision complete discrete valuation fields\",\"authors\":\"Tristan Vaccon\",\"doi\":\"10.1145/2608628.2608658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (<i>f</i><sub>1</sub>,..., <i>f</i><sub><i>s</i></sub>) ∈ Q<sub><i>p</i></sub> [<i>X</i><sub>1</sub>,..., <i>X</i><sub><i>n</i></sub>]<sup><i>s</i></sup> be a sequence of homogeneous polynomials with <i>p</i>-adic coefficients. Such system may happen, for example, in arithmetic geometry. Yet, since A<sub><i>p</i></sub> is not an effective field, classical algorithm does not apply.\\n We provide a definition for an approximate Gröbner basis with respect to a monomial order <i>w</i>. We design a strategy to compute such a basis, when precision is enough and under the assumption that the input sequence is regular and the ideals ⟨<i>f</i><sub>1</sub>,..., <i>f</i><sub><i>i</i></sub>⟩ are weakly-<i>w</i>-ideals. The conjecture of Moreno-Socias states that for the grevlex ordering, such sequences are generic.\\n Two variants of that strategy are available, depending on whether one lean more on precision or time-complexity. For the analysis of these algorithms, we study the loss of precision of the Gauss row-echelon algorithm, and apply it to an adapted Matrix-F5 algorithm. Numerical examples are provided.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

让(f1,…, fs)∈Qp [X1,…], Xn]s是具有p进系数的齐次多项式序列。这样的系统可能会发生,例如在算术几何中。然而,由于Ap不是有效域,所以经典算法不适用。我们给出了一个关于单阶w的近似Gröbner基的定义。我们设计了一种策略来计算这样的基,当精度足够时,假设输入序列是正则的,并且理想为⟨f1,…, fi⟩是弱理想。Moreno-Socias的猜想指出,对于grevlex排序,这样的序列是泛型的。该策略有两种变体,取决于哪种更倾向于精度还是时间复杂度。为了分析这些算法,我们研究了高斯行梯队算法的精度损失,并将其应用于一种自适应的Matrix-F5算法。给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix-F5 algorithms over finite-precision complete discrete valuation fields
Let (f1,..., fs) ∈ Qp [X1,..., Xn]s be a sequence of homogeneous polynomials with p-adic coefficients. Such system may happen, for example, in arithmetic geometry. Yet, since Ap is not an effective field, classical algorithm does not apply. We provide a definition for an approximate Gröbner basis with respect to a monomial order w. We design a strategy to compute such a basis, when precision is enough and under the assumption that the input sequence is regular and the ideals ⟨f1,..., fi⟩ are weakly-w-ideals. The conjecture of Moreno-Socias states that for the grevlex ordering, such sequences are generic. Two variants of that strategy are available, depending on whether one lean more on precision or time-complexity. For the analysis of these algorithms, we study the loss of precision of the Gauss row-echelon algorithm, and apply it to an adapted Matrix-F5 algorithm. Numerical examples are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信