{"title":"PP-NAS:在卷积神经网络上搜索即插即用块","authors":"Biluo Shen, Anqi Xiao, Jie Tian, Z. Hu","doi":"10.1109/ICCVW54120.2021.00045","DOIUrl":null,"url":null,"abstract":"Multi-scale features are of great importance in modern convolutional neural networks and show consistent performance gains on many vision tasks. Therefore, many plug-and-play blocks are introduced to upgrade existing convolutional neural networks for stronger multi-scale representation ability. However, the design of plug-and-play blocks is getting more complex and these manually designed blocks are not optimal. In this work, we propose PP-NAS to develop plug-and-play blocks based on neural architecture search. Specifically, we design a new search space and develop the corresponding search algorithm. Extensive experiments on CIFAR10, CIFAR100, and ImageNet show that PP-NAS can find a series of novel blocks that outperform manually designed ones. Transfer learning results on representative computer vision tasks including object detection and semantic segmentation further verify the superiority of the PP-NAS over the state-of-the-art CNNs (e.g., ResNet, Res2Net). Our code will be made avaliable at https://github.com/sbl1996/PP-NAS.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PP-NAS: Searching for Plug-and-Play Blocks on Convolutional Neural Network\",\"authors\":\"Biluo Shen, Anqi Xiao, Jie Tian, Z. Hu\",\"doi\":\"10.1109/ICCVW54120.2021.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-scale features are of great importance in modern convolutional neural networks and show consistent performance gains on many vision tasks. Therefore, many plug-and-play blocks are introduced to upgrade existing convolutional neural networks for stronger multi-scale representation ability. However, the design of plug-and-play blocks is getting more complex and these manually designed blocks are not optimal. In this work, we propose PP-NAS to develop plug-and-play blocks based on neural architecture search. Specifically, we design a new search space and develop the corresponding search algorithm. Extensive experiments on CIFAR10, CIFAR100, and ImageNet show that PP-NAS can find a series of novel blocks that outperform manually designed ones. Transfer learning results on representative computer vision tasks including object detection and semantic segmentation further verify the superiority of the PP-NAS over the state-of-the-art CNNs (e.g., ResNet, Res2Net). Our code will be made avaliable at https://github.com/sbl1996/PP-NAS.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PP-NAS: Searching for Plug-and-Play Blocks on Convolutional Neural Network
Multi-scale features are of great importance in modern convolutional neural networks and show consistent performance gains on many vision tasks. Therefore, many plug-and-play blocks are introduced to upgrade existing convolutional neural networks for stronger multi-scale representation ability. However, the design of plug-and-play blocks is getting more complex and these manually designed blocks are not optimal. In this work, we propose PP-NAS to develop plug-and-play blocks based on neural architecture search. Specifically, we design a new search space and develop the corresponding search algorithm. Extensive experiments on CIFAR10, CIFAR100, and ImageNet show that PP-NAS can find a series of novel blocks that outperform manually designed ones. Transfer learning results on representative computer vision tasks including object detection and semantic segmentation further verify the superiority of the PP-NAS over the state-of-the-art CNNs (e.g., ResNet, Res2Net). Our code will be made avaliable at https://github.com/sbl1996/PP-NAS.