结合HOSM, CFD和机器学习的波浪载荷和响应预测

J. Oberhagemann, J. Kaufmann, A. K. Ervik, O. Gramstad, J. B. Helmers, F. Sireta
{"title":"结合HOSM, CFD和机器学习的波浪载荷和响应预测","authors":"J. Oberhagemann, J. Kaufmann, A. K. Ervik, O. Gramstad, J. B. Helmers, F. Sireta","doi":"10.1115/omae2019-95352","DOIUrl":null,"url":null,"abstract":"\n We present efforts to progress on numerical predictions of extreme wave loads of ships by combining a variety of state-of-the-art numerical tools. Aims are the generation of wave scenarios to represent the wave excitation and corresponding structural response associated with a pre-defined probability of, e.g., one expected exceedance per life cycle, as well as the further development of numerical methods to predict the ship response to the selected wave events.","PeriodicalId":314553,"journal":{"name":"Volume 3: Structures, Safety, and Reliability","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wave Load and Response Predictions Combining HOSM, CFD and Machine Learning\",\"authors\":\"J. Oberhagemann, J. Kaufmann, A. K. Ervik, O. Gramstad, J. B. Helmers, F. Sireta\",\"doi\":\"10.1115/omae2019-95352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present efforts to progress on numerical predictions of extreme wave loads of ships by combining a variety of state-of-the-art numerical tools. Aims are the generation of wave scenarios to represent the wave excitation and corresponding structural response associated with a pre-defined probability of, e.g., one expected exceedance per life cycle, as well as the further development of numerical methods to predict the ship response to the selected wave events.\",\"PeriodicalId\":314553,\"journal\":{\"name\":\"Volume 3: Structures, Safety, and Reliability\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Structures, Safety, and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过结合各种先进的数值工具,我们提出了在船舶极端波浪载荷数值预测方面取得进展的努力。目的是生成波浪情景,以表示与预先定义的概率相关的波浪激励和相应的结构响应,例如,每个生命周期预期超过一次,以及进一步发展数值方法来预测船舶对选定波浪事件的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave Load and Response Predictions Combining HOSM, CFD and Machine Learning
We present efforts to progress on numerical predictions of extreme wave loads of ships by combining a variety of state-of-the-art numerical tools. Aims are the generation of wave scenarios to represent the wave excitation and corresponding structural response associated with a pre-defined probability of, e.g., one expected exceedance per life cycle, as well as the further development of numerical methods to predict the ship response to the selected wave events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信