M. Gutoski, L. T. Hattori, Nelson Marcelo Romero Aquino, H. C. Senefonte, Manassés Ribeiro, A. Lazzaretti, H. S. Lopes
{"title":"深度学习框架的定性分析","authors":"M. Gutoski, L. T. Hattori, Nelson Marcelo Romero Aquino, H. C. Senefonte, Manassés Ribeiro, A. Lazzaretti, H. S. Lopes","doi":"10.21528/lnlm-vol15-no1-art3","DOIUrl":null,"url":null,"abstract":"– Deep learning methods are becoming more popular for complex pattern recognition applications. As result, many frameworks have appeared aiming to facilitate the development of such applications. However, choosing a suitable framework may not be an easy task for new users. In this paper, a qualitative evaluation of four of the most popular Deep Learning frameworks is provided, including: Caffe, Torch, Lasagne and TensorFlow. A printed character recognition task was used as case study, and a Convolutional Neural Network was implemented for this purpose. The analysis focus on issues that are important for the development process and encompasses nine qualitative dimensions, showing the strengths and weaknesses of each framework. It is expected that this analysis can be useful for guiding new users in the area.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Qualitative analysis of deep learning frameworks\",\"authors\":\"M. Gutoski, L. T. Hattori, Nelson Marcelo Romero Aquino, H. C. Senefonte, Manassés Ribeiro, A. Lazzaretti, H. S. Lopes\",\"doi\":\"10.21528/lnlm-vol15-no1-art3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– Deep learning methods are becoming more popular for complex pattern recognition applications. As result, many frameworks have appeared aiming to facilitate the development of such applications. However, choosing a suitable framework may not be an easy task for new users. In this paper, a qualitative evaluation of four of the most popular Deep Learning frameworks is provided, including: Caffe, Torch, Lasagne and TensorFlow. A printed character recognition task was used as case study, and a Convolutional Neural Network was implemented for this purpose. The analysis focus on issues that are important for the development process and encompasses nine qualitative dimensions, showing the strengths and weaknesses of each framework. It is expected that this analysis can be useful for guiding new users in the area.\",\"PeriodicalId\":386768,\"journal\":{\"name\":\"Learning and Nonlinear Models\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Nonlinear Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/lnlm-vol15-no1-art3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol15-no1-art3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
– Deep learning methods are becoming more popular for complex pattern recognition applications. As result, many frameworks have appeared aiming to facilitate the development of such applications. However, choosing a suitable framework may not be an easy task for new users. In this paper, a qualitative evaluation of four of the most popular Deep Learning frameworks is provided, including: Caffe, Torch, Lasagne and TensorFlow. A printed character recognition task was used as case study, and a Convolutional Neural Network was implemented for this purpose. The analysis focus on issues that are important for the development process and encompasses nine qualitative dimensions, showing the strengths and weaknesses of each framework. It is expected that this analysis can be useful for guiding new users in the area.