基于支持向量机的泰卢固语文字在线识别的两种模式

J. Rajkumar, K. Mariraja, Kanakapriya Kanakapriya, S. Nishanthini, V. Chakravarthy
{"title":"基于支持向量机的泰卢固语文字在线识别的两种模式","authors":"J. Rajkumar, K. Mariraja, Kanakapriya Kanakapriya, S. Nishanthini, V. Chakravarthy","doi":"10.1109/ICFHR.2012.286","DOIUrl":null,"url":null,"abstract":"We present two schemas for online recognition of Telugu characters, involving elaborate multi-classifier architectures. Considering the three-tier vertical organization of a typical Telugu character, we divide the stroke set into 4 subclasses primarily based on their vertical position. Stroke level recognition is based on a bank of Support Vector Machines (SVMs), with a separate SVM trained on each of these classes. Character recognition for Schema 1 is based on a Ternary Search Tree (TST), while for Schema 2 it is based on a SVM. The two schemas yielded overall stroke recognition performances of 89.59% and 96.69% respectively surpassing some of the recent online recognition performance results related to Telugu script reported in literature. The schemas yield character-level recognition performances of 90.55% and 96.42% respectively.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Two Schemas for Online Character Recognition of Telugu Script Based on Support Vector Machines\",\"authors\":\"J. Rajkumar, K. Mariraja, Kanakapriya Kanakapriya, S. Nishanthini, V. Chakravarthy\",\"doi\":\"10.1109/ICFHR.2012.286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two schemas for online recognition of Telugu characters, involving elaborate multi-classifier architectures. Considering the three-tier vertical organization of a typical Telugu character, we divide the stroke set into 4 subclasses primarily based on their vertical position. Stroke level recognition is based on a bank of Support Vector Machines (SVMs), with a separate SVM trained on each of these classes. Character recognition for Schema 1 is based on a Ternary Search Tree (TST), while for Schema 2 it is based on a SVM. The two schemas yielded overall stroke recognition performances of 89.59% and 96.69% respectively surpassing some of the recent online recognition performance results related to Telugu script reported in literature. The schemas yield character-level recognition performances of 90.55% and 96.42% respectively.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了两种泰卢固语字符在线识别模式,涉及复杂的多分类器架构。考虑到典型泰卢固字的三层垂直组织,我们主要根据它们的垂直位置将笔画集分为4个子类。笔划水平识别是基于一组支持向量机(SVM),在每个类上训练一个单独的支持向量机。模式1的字符识别基于三元搜索树(TST),而模式2的字符识别基于支持向量机。两种模式的总体笔画识别性能分别为89.59%和96.69%,超过了近期文献报道的部分泰卢固语文字在线识别结果。两种模式的字符级识别率分别为90.55%和96.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Schemas for Online Character Recognition of Telugu Script Based on Support Vector Machines
We present two schemas for online recognition of Telugu characters, involving elaborate multi-classifier architectures. Considering the three-tier vertical organization of a typical Telugu character, we divide the stroke set into 4 subclasses primarily based on their vertical position. Stroke level recognition is based on a bank of Support Vector Machines (SVMs), with a separate SVM trained on each of these classes. Character recognition for Schema 1 is based on a Ternary Search Tree (TST), while for Schema 2 it is based on a SVM. The two schemas yielded overall stroke recognition performances of 89.59% and 96.69% respectively surpassing some of the recent online recognition performance results related to Telugu script reported in literature. The schemas yield character-level recognition performances of 90.55% and 96.42% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信