一种结合ARIMA和ANN的具有季节和周期特征的电力负荷动态预测模型

K. Yu, C. Hsu, S. M. Yang
{"title":"一种结合ARIMA和ANN的具有季节和周期特征的电力负荷动态预测模型","authors":"K. Yu, C. Hsu, S. M. Yang","doi":"10.1109/ESS.2019.8764179","DOIUrl":null,"url":null,"abstract":"This paper proposes a model having both linear and nonlinear system dynamics by integrating both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model to simulate electrical energy supply inherent with strong seasonal and periodic characteristics in power system. Accurate electrical load forecast becomes possible by the integrated model for the ARIMA is effective to electricity load time series inherent with seasonal fluctuations as well as strong 7-day (per week) periodic characteristics. By using the input of historical daily electricity load data, weather data, and holiday effect variables, the integrated model is shown to be more accurate than the ANN model, the ARIMA model, the classical ARIMA-ANN model, and other well-known methods in the prediction and the forecast of electrical load in normal summer week, normal winter week, 3/4-day holiday week, long holiday week, and extreme weather week.","PeriodicalId":187043,"journal":{"name":"2019 IEEE 6th International Conference on Energy Smart Systems (ESS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Model Integrating ARIMA and ANN with Seasonal and Periodic Characteristics for Forecasting Electricity Load Dynamics in a State\",\"authors\":\"K. Yu, C. Hsu, S. M. Yang\",\"doi\":\"10.1109/ESS.2019.8764179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a model having both linear and nonlinear system dynamics by integrating both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model to simulate electrical energy supply inherent with strong seasonal and periodic characteristics in power system. Accurate electrical load forecast becomes possible by the integrated model for the ARIMA is effective to electricity load time series inherent with seasonal fluctuations as well as strong 7-day (per week) periodic characteristics. By using the input of historical daily electricity load data, weather data, and holiday effect variables, the integrated model is shown to be more accurate than the ANN model, the ARIMA model, the classical ARIMA-ANN model, and other well-known methods in the prediction and the forecast of electrical load in normal summer week, normal winter week, 3/4-day holiday week, long holiday week, and extreme weather week.\",\"PeriodicalId\":187043,\"journal\":{\"name\":\"2019 IEEE 6th International Conference on Energy Smart Systems (ESS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 6th International Conference on Energy Smart Systems (ESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESS.2019.8764179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 6th International Conference on Energy Smart Systems (ESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESS.2019.8764179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文将自回归积分移动平均(ARIMA)模型与人工神经网络(ANN)模型相结合,提出了一个具有线性和非线性系统动力学的模型来模拟电力系统中具有较强季节性和周期性特征的电能供应。由于ARIMA模型对电力负荷时间序列的季节性波动和7天(每周)周期特征有效,因此可以通过综合模型实现准确的电力负荷预测。通过输入历史日电力负荷数据、天气数据和假日效应变量,综合模型在夏季正常周、冬季正常周、3/4天假期周、长假期周和极端天气周的电力负荷预测和预报中,均优于ANN模型、ARIMA模型、经典ARIMA-ANN模型等知名方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Integrating ARIMA and ANN with Seasonal and Periodic Characteristics for Forecasting Electricity Load Dynamics in a State
This paper proposes a model having both linear and nonlinear system dynamics by integrating both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model to simulate electrical energy supply inherent with strong seasonal and periodic characteristics in power system. Accurate electrical load forecast becomes possible by the integrated model for the ARIMA is effective to electricity load time series inherent with seasonal fluctuations as well as strong 7-day (per week) periodic characteristics. By using the input of historical daily electricity load data, weather data, and holiday effect variables, the integrated model is shown to be more accurate than the ANN model, the ARIMA model, the classical ARIMA-ANN model, and other well-known methods in the prediction and the forecast of electrical load in normal summer week, normal winter week, 3/4-day holiday week, long holiday week, and extreme weather week.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信