{"title":"离子温度梯度驱动模式的径向结构","authors":"F. Romanelli, F. Zonca","doi":"10.1063/1.860576","DOIUrl":null,"url":null,"abstract":"An analysis of the radial structure of the ion‐temperature‐gradient‐driven mode is presented and the dependence of the radial correlation length Lr on parameters such as magnetic shear is discussed. It is found that Lr decreases algebraically with increasing shear for moderate to large shear values, and it decreases exponentially with decreasing shear for low shear values. These results seem in qualitative agreement with several experiments which observe strong reduction of the transport coefficients close to the magnetic axis.","PeriodicalId":113346,"journal":{"name":"Physics of fluids. B, Plasma physics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":"{\"title\":\"The radial structure of the ion‐temperature‐gradient‐driven mode\",\"authors\":\"F. Romanelli, F. Zonca\",\"doi\":\"10.1063/1.860576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis of the radial structure of the ion‐temperature‐gradient‐driven mode is presented and the dependence of the radial correlation length Lr on parameters such as magnetic shear is discussed. It is found that Lr decreases algebraically with increasing shear for moderate to large shear values, and it decreases exponentially with decreasing shear for low shear values. These results seem in qualitative agreement with several experiments which observe strong reduction of the transport coefficients close to the magnetic axis.\",\"PeriodicalId\":113346,\"journal\":{\"name\":\"Physics of fluids. B, Plasma physics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"155\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of fluids. B, Plasma physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.860576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of fluids. B, Plasma physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.860576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The radial structure of the ion‐temperature‐gradient‐driven mode
An analysis of the radial structure of the ion‐temperature‐gradient‐driven mode is presented and the dependence of the radial correlation length Lr on parameters such as magnetic shear is discussed. It is found that Lr decreases algebraically with increasing shear for moderate to large shear values, and it decreases exponentially with decreasing shear for low shear values. These results seem in qualitative agreement with several experiments which observe strong reduction of the transport coefficients close to the magnetic axis.