有效检测图像数据库中的任意形状聚类

Dantong Yu, Surojit Chatterjee, A. Zhang
{"title":"有效检测图像数据库中的任意形状聚类","authors":"Dantong Yu, Surojit Chatterjee, A. Zhang","doi":"10.1109/TAI.1999.809785","DOIUrl":null,"url":null,"abstract":"Image databases contain data with high dimensions. Finding interesting patterns in these databases poses a very challenging problem because of the scalability, lack of domain knowledge and complex structures of the embedded clusters. High dimensionality adds severely to the scalability problem. In this paper, we introduce WaveCluster/sup +/, a novel approach to apply wavelet-based techniques for clustering high-dimensional data. Using a hash-based data structure to represent the data set, we offer a detailed technique to apply a wavelet transform on the hashed feature space. We demonstrate that the cost of clustering can be reduced dramatically yet maintaining all the advantages of wavelet-based clustering. This hash-based data representation can be applied for any grid-based clustering approaches. The experimental results show the effectiveness and efficiency of our method on high-dimensional data sets.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficiently detecting arbitrary shaped clusters in image databases\",\"authors\":\"Dantong Yu, Surojit Chatterjee, A. Zhang\",\"doi\":\"10.1109/TAI.1999.809785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image databases contain data with high dimensions. Finding interesting patterns in these databases poses a very challenging problem because of the scalability, lack of domain knowledge and complex structures of the embedded clusters. High dimensionality adds severely to the scalability problem. In this paper, we introduce WaveCluster/sup +/, a novel approach to apply wavelet-based techniques for clustering high-dimensional data. Using a hash-based data structure to represent the data set, we offer a detailed technique to apply a wavelet transform on the hashed feature space. We demonstrate that the cost of clustering can be reduced dramatically yet maintaining all the advantages of wavelet-based clustering. This hash-based data representation can be applied for any grid-based clustering approaches. The experimental results show the effectiveness and efficiency of our method on high-dimensional data sets.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像数据库包含高维数据。由于嵌入式集群的可扩展性、缺乏领域知识和复杂的结构,在这些数据库中寻找有趣的模式是一个非常具有挑战性的问题。高维严重增加了可伸缩性问题。在本文中,我们介绍了WaveCluster/sup +/,这是一种应用基于小波的技术对高维数据进行聚类的新方法。使用基于哈希的数据结构来表示数据集,我们提供了一种对哈希特征空间应用小波变换的详细技术。我们证明了聚类的成本可以大大降低,同时保持基于小波的聚类的所有优点。这种基于散列的数据表示可以应用于任何基于网格的集群方法。实验结果表明了该方法在高维数据集上的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiently detecting arbitrary shaped clusters in image databases
Image databases contain data with high dimensions. Finding interesting patterns in these databases poses a very challenging problem because of the scalability, lack of domain knowledge and complex structures of the embedded clusters. High dimensionality adds severely to the scalability problem. In this paper, we introduce WaveCluster/sup +/, a novel approach to apply wavelet-based techniques for clustering high-dimensional data. Using a hash-based data structure to represent the data set, we offer a detailed technique to apply a wavelet transform on the hashed feature space. We demonstrate that the cost of clustering can be reduced dramatically yet maintaining all the advantages of wavelet-based clustering. This hash-based data representation can be applied for any grid-based clustering approaches. The experimental results show the effectiveness and efficiency of our method on high-dimensional data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信