基于倒谱的非合作水声通信信号检测方法

Heng Zhang, Haiyan Wang, Yongsheng Yan, Hongwei Zhang, Chao Wang
{"title":"基于倒谱的非合作水声通信信号检测方法","authors":"Heng Zhang, Haiyan Wang, Yongsheng Yan, Hongwei Zhang, Chao Wang","doi":"10.1109/ICSPCC55723.2022.9984310","DOIUrl":null,"url":null,"abstract":"An underwater acoustic channel is a complicated and variable channel with noise. It is challenging to detect non-cooperative underwater acoustic communication signal under the condition of unknown signal parameters and low SNR. Now, cepstrum has been widely used in communication signal detection. However, it still cannot meet the requirement of non-cooperative underwater acoustic communication signal detection under the condition of low SNR. We propose a piecewise sliding cepstrum method based on the traditional cepstrum theory to improve detection performance further. We analyze the distribution characteristics of piecewise sliding cepstrum of noise data. Then we present Neyman-Pearson criterion-based piecewise sliding cepstrum detector for non-cooperative underwater acoustic communication signal detection. The value of piecewise sliding cepstrum is demonstrated by simulation and applied to actual recorded data. The results show that the piecewise sliding cepstrum method outperforms cepstrum considerably.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-cooperative underwater acoustic communication signal detection method based on sliding cepstrum\",\"authors\":\"Heng Zhang, Haiyan Wang, Yongsheng Yan, Hongwei Zhang, Chao Wang\",\"doi\":\"10.1109/ICSPCC55723.2022.9984310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An underwater acoustic channel is a complicated and variable channel with noise. It is challenging to detect non-cooperative underwater acoustic communication signal under the condition of unknown signal parameters and low SNR. Now, cepstrum has been widely used in communication signal detection. However, it still cannot meet the requirement of non-cooperative underwater acoustic communication signal detection under the condition of low SNR. We propose a piecewise sliding cepstrum method based on the traditional cepstrum theory to improve detection performance further. We analyze the distribution characteristics of piecewise sliding cepstrum of noise data. Then we present Neyman-Pearson criterion-based piecewise sliding cepstrum detector for non-cooperative underwater acoustic communication signal detection. The value of piecewise sliding cepstrum is demonstrated by simulation and applied to actual recorded data. The results show that the piecewise sliding cepstrum method outperforms cepstrum considerably.\",\"PeriodicalId\":346917,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC55723.2022.9984310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水声信道是一个复杂多变的含噪声信道。在信号参数未知、信噪比低的情况下,如何检测非合作的水声通信信号是一个难题。倒频谱在通信信号检测中得到了广泛的应用。然而,在低信噪比条件下,它仍然不能满足非合作水声通信信号检测的要求。为了进一步提高检测性能,在传统倒谱理论的基础上提出了分段滑动倒谱方法。分析了噪声数据的分段滑动倒谱的分布特征。然后提出了基于Neyman-Pearson准则的分段滑动倒谱检测器,用于水声通信信号的非协同检测。通过仿真验证了分段滑动倒谱的有效性,并将其应用于实际记录数据。结果表明,分段滑动倒谱法的性能明显优于倒谱法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-cooperative underwater acoustic communication signal detection method based on sliding cepstrum
An underwater acoustic channel is a complicated and variable channel with noise. It is challenging to detect non-cooperative underwater acoustic communication signal under the condition of unknown signal parameters and low SNR. Now, cepstrum has been widely used in communication signal detection. However, it still cannot meet the requirement of non-cooperative underwater acoustic communication signal detection under the condition of low SNR. We propose a piecewise sliding cepstrum method based on the traditional cepstrum theory to improve detection performance further. We analyze the distribution characteristics of piecewise sliding cepstrum of noise data. Then we present Neyman-Pearson criterion-based piecewise sliding cepstrum detector for non-cooperative underwater acoustic communication signal detection. The value of piecewise sliding cepstrum is demonstrated by simulation and applied to actual recorded data. The results show that the piecewise sliding cepstrum method outperforms cepstrum considerably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信