对称稳定过程驱动的可测系数随机方程

V. P. Kurenok
{"title":"对称稳定过程驱动的可测系数随机方程","authors":"V. P. Kurenok","doi":"10.1155/2012/258415","DOIUrl":null,"url":null,"abstract":"We consider a one-dimensional stochastic equation 𝑑 𝑋 𝑡 = 𝑏 ( 𝑡 , 𝑋 𝑡 − ) 𝑑 𝑍 𝑡 + 𝑎 ( 𝑡 , 𝑋 𝑡 ) 𝑑 𝑡 , 𝑡 ≥ 0 , with respect to a symmetric stable process 𝑍 of index 0 𝛼 ≤ 2 . It is shown that solving this equation is equivalent to solving of a 2-dimensional stochastic equation 𝑑 𝐿 𝑡 = 𝐵 ( 𝐿 𝑡 − ) 𝑑 𝑊 𝑡 with respect to the semimartingale 𝑊 = ( 𝑍 , 𝑡 ) and corresponding matrix 𝐵 . In the case of 1 ≤ 𝛼 2 we provide new sufficient conditions for the existence of solutions of both equations with measurable coefficients. The \nexistence proofs are established using the method of Krylov's estimates \nfor processes satisfying the 2-dimensional equation. On another hand, \nthe Krylov's estimates are based on some analytical facts of independent \ninterest that are also proved in the paper.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Stochastic Equations with Measurable Coefficients Driven by Symmetric Stable Processes\",\"authors\":\"V. P. Kurenok\",\"doi\":\"10.1155/2012/258415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a one-dimensional stochastic equation 𝑑 𝑋 𝑡 = 𝑏 ( 𝑡 , 𝑋 𝑡 − ) 𝑑 𝑍 𝑡 + 𝑎 ( 𝑡 , 𝑋 𝑡 ) 𝑑 𝑡 , 𝑡 ≥ 0 , with respect to a symmetric stable process 𝑍 of index 0 𝛼 ≤ 2 . It is shown that solving this equation is equivalent to solving of a 2-dimensional stochastic equation 𝑑 𝐿 𝑡 = 𝐵 ( 𝐿 𝑡 − ) 𝑑 𝑊 𝑡 with respect to the semimartingale 𝑊 = ( 𝑍 , 𝑡 ) and corresponding matrix 𝐵 . In the case of 1 ≤ 𝛼 2 we provide new sufficient conditions for the existence of solutions of both equations with measurable coefficients. The \\nexistence proofs are established using the method of Krylov's estimates \\nfor processes satisfying the 2-dimensional equation. On another hand, \\nthe Krylov's estimates are based on some analytical facts of independent \\ninterest that are also proved in the paper.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/258415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/258415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一维随机方程𝑑𝑋𝑡=𝑏(𝑡,𝑋𝑡−)𝑑𝑍𝑡+𝑎(𝑡,𝑋𝑡)𝑑𝑡,𝑡≥0,对对称稳定过程𝑍索引0𝛼≤2。结果表明,求解该方程等价于求解一个关于半鞅𝑊=(𝑍,𝑡)及其对应矩阵 的二维随机方程𝑑𝐿𝑡= (𝐿𝑡−)𝑑𝑊𝑡。在1≤rp2的情况下,给出了两个可测系数方程解存在的新的充分条件。对于满足二维方程的过程,用Krylov估计方法建立了存在性证明。另一方面,Krylov的估计是基于一些独立的分析事实,这些事实也在本文中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Stochastic Equations with Measurable Coefficients Driven by Symmetric Stable Processes
We consider a one-dimensional stochastic equation 𝑑 𝑋 𝑡 = 𝑏 ( 𝑡 , 𝑋 𝑡 − ) 𝑑 𝑍 𝑡 + 𝑎 ( 𝑡 , 𝑋 𝑡 ) 𝑑 𝑡 , 𝑡 ≥ 0 , with respect to a symmetric stable process 𝑍 of index 0 𝛼 ≤ 2 . It is shown that solving this equation is equivalent to solving of a 2-dimensional stochastic equation 𝑑 𝐿 𝑡 = 𝐵 ( 𝐿 𝑡 − ) 𝑑 𝑊 𝑡 with respect to the semimartingale 𝑊 = ( 𝑍 , 𝑡 ) and corresponding matrix 𝐵 . In the case of 1 ≤ 𝛼 2 we provide new sufficient conditions for the existence of solutions of both equations with measurable coefficients. The existence proofs are established using the method of Krylov's estimates for processes satisfying the 2-dimensional equation. On another hand, the Krylov's estimates are based on some analytical facts of independent interest that are also proved in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信