基于智能方法的三相异步电动机多故障时域诊断

R. H. Palácios, W. Godoy, A. Goedtel, I. D. da Silva, D. Morinigo-Sotelo, Ó. Duque-Pérez
{"title":"基于智能方法的三相异步电动机多故障时域诊断","authors":"R. H. Palácios, W. Godoy, A. Goedtel, I. D. da Silva, D. Morinigo-Sotelo, Ó. Duque-Pérez","doi":"10.1109/DEMPED.2017.8062338","DOIUrl":null,"url":null,"abstract":"The three-phase induction motor is one of the most employed equipment in industrial premisses. Despite of its reliability and robustness, these machines can present faults due to the operation time, harsh operating conditions, voltage unbalance, among other factors. In this work, a methodology for intelligent diagnose of multiple faults in induction motors by using a discretization of currents and voltages amplitudes signals in the time domain is proposed. Three types of intelligent classifiers are employed to proper diagnose motor faults: artificial neural network type multilayer perceptron (ANN/MLP), algorithm k-nearest neighbour (k-NN) and support vector machine with sequential minimal optimization (SVM/SMO). The investigated faults are related to stator short-circuit, broken rotor bars and bearing defects. Experimental results are obtained with data gathered from a 1 hp motor under varied load and unbalanced voltage conditions. The MLP and k-NN classifiers are highlighted with accuracy above 89%.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Time domain diagnosis of multiple faults in three phase induction motors using inteligent approaches\",\"authors\":\"R. H. Palácios, W. Godoy, A. Goedtel, I. D. da Silva, D. Morinigo-Sotelo, Ó. Duque-Pérez\",\"doi\":\"10.1109/DEMPED.2017.8062338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three-phase induction motor is one of the most employed equipment in industrial premisses. Despite of its reliability and robustness, these machines can present faults due to the operation time, harsh operating conditions, voltage unbalance, among other factors. In this work, a methodology for intelligent diagnose of multiple faults in induction motors by using a discretization of currents and voltages amplitudes signals in the time domain is proposed. Three types of intelligent classifiers are employed to proper diagnose motor faults: artificial neural network type multilayer perceptron (ANN/MLP), algorithm k-nearest neighbour (k-NN) and support vector machine with sequential minimal optimization (SVM/SMO). The investigated faults are related to stator short-circuit, broken rotor bars and bearing defects. Experimental results are obtained with data gathered from a 1 hp motor under varied load and unbalanced voltage conditions. The MLP and k-NN classifiers are highlighted with accuracy above 89%.\",\"PeriodicalId\":325413,\"journal\":{\"name\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2017.8062338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

三相感应电动机是工业场所中使用最多的设备之一。尽管这些机器具有可靠性和稳健性,但由于操作时间,恶劣的操作条件,电压不平衡等因素,这些机器可能会出现故障。在这项工作中,提出了一种在时域中使用电流和电压幅值信号离散化的方法来智能诊断感应电动机的多故障。采用人工神经网络型多层感知器(ANN/MLP)、k-近邻算法(k-NN)和支持向量机序列最小优化(SVM/SMO)三种智能分类器对电机故障进行正确诊断。所研究的故障与定子短路、转子断条和轴承缺陷有关。实验结果是在不同负载和不平衡电压条件下从一台1hp电机收集的数据得到的。MLP和k-NN分类器的准确率在89%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time domain diagnosis of multiple faults in three phase induction motors using inteligent approaches
The three-phase induction motor is one of the most employed equipment in industrial premisses. Despite of its reliability and robustness, these machines can present faults due to the operation time, harsh operating conditions, voltage unbalance, among other factors. In this work, a methodology for intelligent diagnose of multiple faults in induction motors by using a discretization of currents and voltages amplitudes signals in the time domain is proposed. Three types of intelligent classifiers are employed to proper diagnose motor faults: artificial neural network type multilayer perceptron (ANN/MLP), algorithm k-nearest neighbour (k-NN) and support vector machine with sequential minimal optimization (SVM/SMO). The investigated faults are related to stator short-circuit, broken rotor bars and bearing defects. Experimental results are obtained with data gathered from a 1 hp motor under varied load and unbalanced voltage conditions. The MLP and k-NN classifiers are highlighted with accuracy above 89%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信