利用进化神经网络鉴定功能性RNA基因

Mars Cheung, G. Fogel
{"title":"利用进化神经网络鉴定功能性RNA基因","authors":"Mars Cheung, G. Fogel","doi":"10.1109/CIBCB.2005.1594895","DOIUrl":null,"url":null,"abstract":"Functional RNAs (fRNAs) play a key role in gene regulation, at both the transcriptional and translational levels. Identification of fRNA genes can be difficult, given that some classes of fRNAs (especially microRNAs) have short coding regions and do not use classical signals common to protein coding genes. This paper presents an approach to identify fRNA genes using evolved neural networks to discriminate between noncoding regions of genomes and regions that are likely to be fRNA coding. The results indicate that for human and C. elegans this approach can be used with considerable success.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identification of Functional RNA Genes Using Evolved Neural Networks\",\"authors\":\"Mars Cheung, G. Fogel\",\"doi\":\"10.1109/CIBCB.2005.1594895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional RNAs (fRNAs) play a key role in gene regulation, at both the transcriptional and translational levels. Identification of fRNA genes can be difficult, given that some classes of fRNAs (especially microRNAs) have short coding regions and do not use classical signals common to protein coding genes. This paper presents an approach to identify fRNA genes using evolved neural networks to discriminate between noncoding regions of genomes and regions that are likely to be fRNA coding. The results indicate that for human and C. elegans this approach can be used with considerable success.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

功能性rna (fRNAs)在转录和翻译水平上都在基因调控中起着关键作用。由于某些种类的fRNA(尤其是microrna)具有较短的编码区,并且不使用与蛋白质编码基因相同的经典信号,因此鉴定fRNA基因可能很困难。本文提出了一种识别fRNA基因的方法,使用进化的神经网络来区分基因组的非编码区域和可能是fRNA编码的区域。结果表明,对于人类和秀丽隐杆线虫,这种方法可以获得相当大的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Functional RNA Genes Using Evolved Neural Networks
Functional RNAs (fRNAs) play a key role in gene regulation, at both the transcriptional and translational levels. Identification of fRNA genes can be difficult, given that some classes of fRNAs (especially microRNAs) have short coding regions and do not use classical signals common to protein coding genes. This paper presents an approach to identify fRNA genes using evolved neural networks to discriminate between noncoding regions of genomes and regions that are likely to be fRNA coding. The results indicate that for human and C. elegans this approach can be used with considerable success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信