{"title":"基于变分计算的医学图像CNN分割方法","authors":"A. Gacsádi, P. Szolgay","doi":"10.1109/CNNA.2010.5430256","DOIUrl":null,"url":null,"abstract":"The paper presents a new variational computing based medical image segmentation method by using Cellular Neural Networks (CNN). By implementing the proposed algorithm on FPGA (Field Programmable Gate Array) with an emulated digital CNN-UM (CNN-Universal Machine) there is the possibility to meet the requirements for medical image segmentation.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Variational computing based segmentation methods for medical imaging by using CNN\",\"authors\":\"A. Gacsádi, P. Szolgay\",\"doi\":\"10.1109/CNNA.2010.5430256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new variational computing based medical image segmentation method by using Cellular Neural Networks (CNN). By implementing the proposed algorithm on FPGA (Field Programmable Gate Array) with an emulated digital CNN-UM (CNN-Universal Machine) there is the possibility to meet the requirements for medical image segmentation.\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variational computing based segmentation methods for medical imaging by using CNN
The paper presents a new variational computing based medical image segmentation method by using Cellular Neural Networks (CNN). By implementing the proposed algorithm on FPGA (Field Programmable Gate Array) with an emulated digital CNN-UM (CNN-Universal Machine) there is the possibility to meet the requirements for medical image segmentation.