机器感知如何与人类感知相关:高度/全自动驾驶逐帧语义分割任务中的视觉显著性和距离

Nico Herbig, Frederik Wiehr, Atanas Poibrenski, J. Sprenger, Christian Müller
{"title":"机器感知如何与人类感知相关:高度/全自动驾驶逐帧语义分割任务中的视觉显著性和距离","authors":"Nico Herbig, Frederik Wiehr, Atanas Poibrenski, J. Sprenger, Christian Müller","doi":"10.1145/3194085.3194092","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the link between machine perception and human perception for highly/fully automated driving. We compare the classification results of a camera-based frame-by-frame semantic segmentation model Machine with a well-established visual saliency model Human on the Cityscapes dataset. The results show that Machine classifies foreground objects better if they are more salient, indicating a similarity with the human visual system. For background objects, the accuracy drops when the saliency increases, giving evidence for the assumption that Machine has an implicit concept of saliency.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Machine Perception Relates to Human Perception: Visual Saliency and Distance in a Frame-by-Frame Semantic Segmentation Task for Highly/Fully Automated Driving\",\"authors\":\"Nico Herbig, Frederik Wiehr, Atanas Poibrenski, J. Sprenger, Christian Müller\",\"doi\":\"10.1145/3194085.3194092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the link between machine perception and human perception for highly/fully automated driving. We compare the classification results of a camera-based frame-by-frame semantic segmentation model Machine with a well-established visual saliency model Human on the Cityscapes dataset. The results show that Machine classifies foreground objects better if they are more salient, indicating a similarity with the human visual system. For background objects, the accuracy drops when the saliency increases, giving evidence for the assumption that Machine has an implicit concept of saliency.\",\"PeriodicalId\":360022,\"journal\":{\"name\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194085.3194092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了高度/全自动驾驶中机器感知和人类感知之间的联系。在cityscape数据集上,我们比较了基于相机的逐帧语义分割模型Machine和成熟的视觉显著性模型Human的分类结果。结果表明,如果前景物体更突出,机器分类效果更好,这表明与人类视觉系统相似。对于背景对象,当显著性增加时,准确率下降,这为Machine具有隐式显著性概念的假设提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Machine Perception Relates to Human Perception: Visual Saliency and Distance in a Frame-by-Frame Semantic Segmentation Task for Highly/Fully Automated Driving
In this paper, we investigate the link between machine perception and human perception for highly/fully automated driving. We compare the classification results of a camera-based frame-by-frame semantic segmentation model Machine with a well-established visual saliency model Human on the Cityscapes dataset. The results show that Machine classifies foreground objects better if they are more salient, indicating a similarity with the human visual system. For background objects, the accuracy drops when the saliency increases, giving evidence for the assumption that Machine has an implicit concept of saliency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信