云中的多组学数据整合:乳腺癌临床和分子特征之间的统计学显著相关性分析

Kawther Abdilleh, Boris Aguilar, J. Thomson
{"title":"云中的多组学数据整合:乳腺癌临床和分子特征之间的统计学显著相关性分析","authors":"Kawther Abdilleh, Boris Aguilar, J. Thomson","doi":"10.1145/3388440.3414917","DOIUrl":null,"url":null,"abstract":"Breast Cancers are among the most common forms of cancers impacting women with over 1 million diagnoses every year worldwide. They are complex cancers characterized by distinct clinical outcomes, morphological and molecular features. As high-throughput technologies generating data at the mRNA and protein levels become cheaper and more accessible, researchers are now able to study these entities in concert with clinical features to gain a more holistic picture of Breast Cancer and other complex diseases. In this poster, we aimed at identifying the concordance or discordance of mRNA and protein expressions that are significantly associated with Breast Cancer histological subtypes and other relevant clinical features. We employed a novel cloud-based approach to analyze these statistical associations using available genomic, proteomic, and clinical cancer data on the Google Cloud through the ISB-CGC, one of the National Cancer Institute's (NCI) Cloud Resources. Our results indicate that, considering all available clinical features, a considerable number of molecules (genes and proteins) are significantly associated with the Breast Cancer histological subtypes of infiltrating ductal carcinoma and infiltrating lobular carcinoma, two common forms associated with invasive Breast Cancer. Moreover, statistically significant associations were overrepresented for molecules involved in PI3K/AKT signaling, negative regulation of the PI3K/AKT network and extra-nuclear estrogen signaling. Taken together, these results demonstrate how powerful cloud-based analytics can be in identifying novel molecular relationships relevant for Breast Cancer. text here.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics data integration in the Cloud: Analysis of Statistically Significant Associations Between Clinical and Molecular Features in Breast Cancer\",\"authors\":\"Kawther Abdilleh, Boris Aguilar, J. Thomson\",\"doi\":\"10.1145/3388440.3414917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast Cancers are among the most common forms of cancers impacting women with over 1 million diagnoses every year worldwide. They are complex cancers characterized by distinct clinical outcomes, morphological and molecular features. As high-throughput technologies generating data at the mRNA and protein levels become cheaper and more accessible, researchers are now able to study these entities in concert with clinical features to gain a more holistic picture of Breast Cancer and other complex diseases. In this poster, we aimed at identifying the concordance or discordance of mRNA and protein expressions that are significantly associated with Breast Cancer histological subtypes and other relevant clinical features. We employed a novel cloud-based approach to analyze these statistical associations using available genomic, proteomic, and clinical cancer data on the Google Cloud through the ISB-CGC, one of the National Cancer Institute's (NCI) Cloud Resources. Our results indicate that, considering all available clinical features, a considerable number of molecules (genes and proteins) are significantly associated with the Breast Cancer histological subtypes of infiltrating ductal carcinoma and infiltrating lobular carcinoma, two common forms associated with invasive Breast Cancer. Moreover, statistically significant associations were overrepresented for molecules involved in PI3K/AKT signaling, negative regulation of the PI3K/AKT network and extra-nuclear estrogen signaling. Taken together, these results demonstrate how powerful cloud-based analytics can be in identifying novel molecular relationships relevant for Breast Cancer. text here.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3414917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是影响妇女的最常见癌症之一,全世界每年有超过100万例确诊病例。它们是复杂的癌症,具有不同的临床结果、形态学和分子特征。随着产生mRNA和蛋白质水平数据的高通量技术变得更便宜和更容易获得,研究人员现在能够将这些实体与临床特征结合起来研究,以获得乳腺癌和其他复杂疾病的更全面的图景。在这张海报中,我们旨在识别与乳腺癌组织学亚型和其他相关临床特征显著相关的mRNA和蛋白表达的一致性或不一致性。我们采用了一种新颖的基于云的方法,通过ISB-CGC(国家癌症研究所(NCI)云资源之一),使用谷歌云上可用的基因组、蛋白质组学和临床癌症数据来分析这些统计关联。我们的研究结果表明,考虑到所有可用的临床特征,相当数量的分子(基因和蛋白质)与浸润性导管癌和浸润性小叶癌这两种与浸润性乳腺癌相关的常见形式的乳腺癌组织学亚型显著相关。此外,参与PI3K/AKT信号传导、PI3K/AKT网络负调控和核外雌激素信号传导的分子在统计学上存在显著关联。综上所述,这些结果证明了基于云的分析在识别与乳腺癌相关的新型分子关系方面是多么强大。文本在这里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-omics data integration in the Cloud: Analysis of Statistically Significant Associations Between Clinical and Molecular Features in Breast Cancer
Breast Cancers are among the most common forms of cancers impacting women with over 1 million diagnoses every year worldwide. They are complex cancers characterized by distinct clinical outcomes, morphological and molecular features. As high-throughput technologies generating data at the mRNA and protein levels become cheaper and more accessible, researchers are now able to study these entities in concert with clinical features to gain a more holistic picture of Breast Cancer and other complex diseases. In this poster, we aimed at identifying the concordance or discordance of mRNA and protein expressions that are significantly associated with Breast Cancer histological subtypes and other relevant clinical features. We employed a novel cloud-based approach to analyze these statistical associations using available genomic, proteomic, and clinical cancer data on the Google Cloud through the ISB-CGC, one of the National Cancer Institute's (NCI) Cloud Resources. Our results indicate that, considering all available clinical features, a considerable number of molecules (genes and proteins) are significantly associated with the Breast Cancer histological subtypes of infiltrating ductal carcinoma and infiltrating lobular carcinoma, two common forms associated with invasive Breast Cancer. Moreover, statistically significant associations were overrepresented for molecules involved in PI3K/AKT signaling, negative regulation of the PI3K/AKT network and extra-nuclear estrogen signaling. Taken together, these results demonstrate how powerful cloud-based analytics can be in identifying novel molecular relationships relevant for Breast Cancer. text here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信