使用深度模型的越南语说话人身份验证

Son T. Nguyen, Viet Dac Lai, Quyen Dam-Ba, Anh Nguyen-Xuan, Cuong Pham
{"title":"使用深度模型的越南语说话人身份验证","authors":"Son T. Nguyen, Viet Dac Lai, Quyen Dam-Ba, Anh Nguyen-Xuan, Cuong Pham","doi":"10.1145/3287921.3287954","DOIUrl":null,"url":null,"abstract":"Speaker Authentication is the identification of a user from voice biometrics and has a wide range of applications such as banking security, human computer interaction and ambient authentication. In this work, we investigate the effectiveness of acoustic features such as Mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC), and Linear Predictive Codes (LPC) extracted from audio streams for constructing feature spectral images. In addition, we propose to use the deep Residual Network models for user verification from feature spectrum images. We evaluate our proposed method under two settings over the dataset collected from 20 Vietnamese speakers. The results, with the Equal Error rate of around 4%, have demonstrated that the feasibility of Vietnamese speaker authentication by using deep Residual Network models trained with GFCC spectral feature images.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vietnamese Speaker Authentication Using Deep Models\",\"authors\":\"Son T. Nguyen, Viet Dac Lai, Quyen Dam-Ba, Anh Nguyen-Xuan, Cuong Pham\",\"doi\":\"10.1145/3287921.3287954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker Authentication is the identification of a user from voice biometrics and has a wide range of applications such as banking security, human computer interaction and ambient authentication. In this work, we investigate the effectiveness of acoustic features such as Mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC), and Linear Predictive Codes (LPC) extracted from audio streams for constructing feature spectral images. In addition, we propose to use the deep Residual Network models for user verification from feature spectrum images. We evaluate our proposed method under two settings over the dataset collected from 20 Vietnamese speakers. The results, with the Equal Error rate of around 4%, have demonstrated that the feasibility of Vietnamese speaker authentication by using deep Residual Network models trained with GFCC spectral feature images.\",\"PeriodicalId\":448008,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287921.3287954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

说话人身份验证是通过语音生物识别技术对用户进行身份识别,在银行安全、人机交互和环境身份验证等领域有着广泛的应用。在这项工作中,我们研究了从音频流中提取的mel频率倒谱系数(MFCC)、gamma酮频率倒谱系数(GFCC)和线性预测码(LPC)等声学特征用于构建特征频谱图像的有效性。此外,我们建议使用深度残差网络模型对特征光谱图像进行用户验证。我们在两种设置下对从20名越南语使用者收集的数据集进行了评估。结果表明,使用GFCC光谱特征图像训练的深度残差网络模型进行越南语说话人身份验证是可行的,误差率约为4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vietnamese Speaker Authentication Using Deep Models
Speaker Authentication is the identification of a user from voice biometrics and has a wide range of applications such as banking security, human computer interaction and ambient authentication. In this work, we investigate the effectiveness of acoustic features such as Mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC), and Linear Predictive Codes (LPC) extracted from audio streams for constructing feature spectral images. In addition, we propose to use the deep Residual Network models for user verification from feature spectrum images. We evaluate our proposed method under two settings over the dataset collected from 20 Vietnamese speakers. The results, with the Equal Error rate of around 4%, have demonstrated that the feasibility of Vietnamese speaker authentication by using deep Residual Network models trained with GFCC spectral feature images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信