{"title":"破产预测的计算建模:整合图数据库和金融本体的语义数据分析","authors":"Natalia Yerashenia, A. Bolotov","doi":"10.1109/CBI.2019.00017","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel intelligent methodology to construct a Bankruptcy Prediction Computation Model, which is aimed to execute a company's financial status analysis accurately. Based on the semantic data analysis and management, our methodology considers Semantic Database System as the core of the system. It comprises three layers: an Ontology of Bankruptcy Prediction, Semantic Search Engine, and a Semantic Analysis Graph Database system. The Ontological layer defines the basic concepts of the financial risk management as well as the objects that serve as sources of knowledge for predicting a company's bankruptcy. The Graph Database layer utilises a powerful semantic data technology, which serves as a semantic data repository for our model. The article provides a detailed description of the construction of the Ontology and its informal conceptual representation. We also present a working prototype of the Graph Database system, constructed using the Neo4j application, and show the connection between well-known financial ratios. We argue that this methodology which utilises state of the art semantic data management mechanisms enables data processing and relevant computations in a more efficient way than approaches using the traditional relational database. These give us solid grounds to build a system that is capable of tackling the data of any complexity level.","PeriodicalId":193238,"journal":{"name":"2019 IEEE 21st Conference on Business Informatics (CBI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computational Modelling for Bankruptcy Prediction: Semantic Data Analysis Integrating Graph Database and Financial Ontology\",\"authors\":\"Natalia Yerashenia, A. Bolotov\",\"doi\":\"10.1109/CBI.2019.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel intelligent methodology to construct a Bankruptcy Prediction Computation Model, which is aimed to execute a company's financial status analysis accurately. Based on the semantic data analysis and management, our methodology considers Semantic Database System as the core of the system. It comprises three layers: an Ontology of Bankruptcy Prediction, Semantic Search Engine, and a Semantic Analysis Graph Database system. The Ontological layer defines the basic concepts of the financial risk management as well as the objects that serve as sources of knowledge for predicting a company's bankruptcy. The Graph Database layer utilises a powerful semantic data technology, which serves as a semantic data repository for our model. The article provides a detailed description of the construction of the Ontology and its informal conceptual representation. We also present a working prototype of the Graph Database system, constructed using the Neo4j application, and show the connection between well-known financial ratios. We argue that this methodology which utilises state of the art semantic data management mechanisms enables data processing and relevant computations in a more efficient way than approaches using the traditional relational database. These give us solid grounds to build a system that is capable of tackling the data of any complexity level.\",\"PeriodicalId\":193238,\"journal\":{\"name\":\"2019 IEEE 21st Conference on Business Informatics (CBI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 21st Conference on Business Informatics (CBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBI.2019.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 21st Conference on Business Informatics (CBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBI.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Modelling for Bankruptcy Prediction: Semantic Data Analysis Integrating Graph Database and Financial Ontology
In this paper, we propose a novel intelligent methodology to construct a Bankruptcy Prediction Computation Model, which is aimed to execute a company's financial status analysis accurately. Based on the semantic data analysis and management, our methodology considers Semantic Database System as the core of the system. It comprises three layers: an Ontology of Bankruptcy Prediction, Semantic Search Engine, and a Semantic Analysis Graph Database system. The Ontological layer defines the basic concepts of the financial risk management as well as the objects that serve as sources of knowledge for predicting a company's bankruptcy. The Graph Database layer utilises a powerful semantic data technology, which serves as a semantic data repository for our model. The article provides a detailed description of the construction of the Ontology and its informal conceptual representation. We also present a working prototype of the Graph Database system, constructed using the Neo4j application, and show the connection between well-known financial ratios. We argue that this methodology which utilises state of the art semantic data management mechanisms enables data processing and relevant computations in a more efficient way than approaches using the traditional relational database. These give us solid grounds to build a system that is capable of tackling the data of any complexity level.