{"title":"基于自适应聚类算法的非线性系统模糊建模与控制","authors":"Kai Zhao, Shurong Li, Zhongjian Kang","doi":"10.1109/ICMIC.2018.8530000","DOIUrl":null,"url":null,"abstract":"In order to control a nonlinear system, a model needs to be established to predict its behavior. At present, there are many methods for nonlinear system modeling. Among them T-S fuzzy prediction model has attracted extensive attention due to its better generalization and excellent approximation in the dense region. Clustering algorithms can be used for the premise identification of the T-S model. But the optimal premise is not easy to be determined because of the difficulty to obtain optimal clustering number. For solving the shortcoming, a clustering validity function is described, based on which the clustering performance of adaptive fuzzy C-means clustering algorithm (adaptive FCM) is compared to that of the adaptive alternative fuzzy C-mean clustering algorithm (adaptive AFCM) with three datasets. Furthermore, two modeling algorithms for T-S fuzzy model using the adaptive FCM and the adaptive AFCM are designed, combining with the RLS, named adaptive FCM-RLS and adaptive AFCM-RLS. Finally, in order to demonstrate the effectiveness of the modeling methods in this paper, the T-S fuzzy model of a batch progress is constructed by adaptive FCM-RLS. With the T-S model, fuzzy generalized predictive controller is designed. Simulation results show that fuzzy-GPC controller has the better performances than GPC controller desisned with least square method.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Takagi-Sugeno Fuzzy Modeling and Control of Nonlinear System with Adaptive Clustering Algorithms\",\"authors\":\"Kai Zhao, Shurong Li, Zhongjian Kang\",\"doi\":\"10.1109/ICMIC.2018.8530000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to control a nonlinear system, a model needs to be established to predict its behavior. At present, there are many methods for nonlinear system modeling. Among them T-S fuzzy prediction model has attracted extensive attention due to its better generalization and excellent approximation in the dense region. Clustering algorithms can be used for the premise identification of the T-S model. But the optimal premise is not easy to be determined because of the difficulty to obtain optimal clustering number. For solving the shortcoming, a clustering validity function is described, based on which the clustering performance of adaptive fuzzy C-means clustering algorithm (adaptive FCM) is compared to that of the adaptive alternative fuzzy C-mean clustering algorithm (adaptive AFCM) with three datasets. Furthermore, two modeling algorithms for T-S fuzzy model using the adaptive FCM and the adaptive AFCM are designed, combining with the RLS, named adaptive FCM-RLS and adaptive AFCM-RLS. Finally, in order to demonstrate the effectiveness of the modeling methods in this paper, the T-S fuzzy model of a batch progress is constructed by adaptive FCM-RLS. With the T-S model, fuzzy generalized predictive controller is designed. Simulation results show that fuzzy-GPC controller has the better performances than GPC controller desisned with least square method.\",\"PeriodicalId\":262938,\"journal\":{\"name\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2018.8530000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8530000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Takagi-Sugeno Fuzzy Modeling and Control of Nonlinear System with Adaptive Clustering Algorithms
In order to control a nonlinear system, a model needs to be established to predict its behavior. At present, there are many methods for nonlinear system modeling. Among them T-S fuzzy prediction model has attracted extensive attention due to its better generalization and excellent approximation in the dense region. Clustering algorithms can be used for the premise identification of the T-S model. But the optimal premise is not easy to be determined because of the difficulty to obtain optimal clustering number. For solving the shortcoming, a clustering validity function is described, based on which the clustering performance of adaptive fuzzy C-means clustering algorithm (adaptive FCM) is compared to that of the adaptive alternative fuzzy C-mean clustering algorithm (adaptive AFCM) with three datasets. Furthermore, two modeling algorithms for T-S fuzzy model using the adaptive FCM and the adaptive AFCM are designed, combining with the RLS, named adaptive FCM-RLS and adaptive AFCM-RLS. Finally, in order to demonstrate the effectiveness of the modeling methods in this paper, the T-S fuzzy model of a batch progress is constructed by adaptive FCM-RLS. With the T-S model, fuzzy generalized predictive controller is designed. Simulation results show that fuzzy-GPC controller has the better performances than GPC controller desisned with least square method.