直觉和经典选择的混合可实现性

Valentin Blot
{"title":"直觉和经典选择的混合可实现性","authors":"Valentin Blot","doi":"10.1145/2933575.2934511","DOIUrl":null,"url":null,"abstract":"In intuitionistic realizability like Kleene’s or Kreisel’s, the axiom of choice is trivially realized. It is even provable in Martin-Löf’s intuitionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable functions. This logical strength comes at the price of a complicated computational interpretation which involves strong recursion schemes like bar recursion. We take the best from both worlds and define a realizability model for arithmetic and the axiom of choice which encompasses both intuitionistic and classical reasoning. In this model two versions of the axiom of choice can co-exist in a single proof: intuitionistic choice and classical countable choice. We interpret intuitionistic choice efficiently, however its premise cannot come from classical reasoning. Conversely, our version of classical choice is valid in full classical logic, but it is restricted to the countable case and its realizer involves bar recursion. Having both versions allows us to obtain efficient extracted programs while keeping the provability strength of classical logic.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid realizability for intuitionistic and classical choice\",\"authors\":\"Valentin Blot\",\"doi\":\"10.1145/2933575.2934511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In intuitionistic realizability like Kleene’s or Kreisel’s, the axiom of choice is trivially realized. It is even provable in Martin-Löf’s intuitionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable functions. This logical strength comes at the price of a complicated computational interpretation which involves strong recursion schemes like bar recursion. We take the best from both worlds and define a realizability model for arithmetic and the axiom of choice which encompasses both intuitionistic and classical reasoning. In this model two versions of the axiom of choice can co-exist in a single proof: intuitionistic choice and classical countable choice. We interpret intuitionistic choice efficiently, however its premise cannot come from classical reasoning. Conversely, our version of classical choice is valid in full classical logic, but it is restricted to the countable case and its realizer involves bar recursion. Having both versions allows us to obtain efficient extracted programs while keeping the provability strength of classical logic.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2934511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2934511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在像Kleene或Kreisel这样的直觉可实现性中,选择公理被简单地实现。它甚至可以在Martin-Löf的直觉型理论中得到证明。然而,在经典逻辑中,即使是较弱的可数选择公理也证明了不可计算函数的存在性。这种逻辑强度是以复杂的计算解释为代价的,其中包括像条形递归这样的强递归方案。我们从两个世界中汲取精华,定义了一个包含直觉推理和经典推理的算术和选择公理的可实现模型。在这个模型中,选择公理的两个版本可以共存于一个证明中:直觉选择和经典可数选择。我们可以有效地解释直觉选择,但它的前提不能来自经典推理。相反,我们的经典选择版本在完全经典逻辑中是有效的,但它仅限于可数情况,并且它的实现涉及棒状递归。拥有这两个版本使我们能够获得有效的提取程序,同时保持经典逻辑的可证明性强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid realizability for intuitionistic and classical choice
In intuitionistic realizability like Kleene’s or Kreisel’s, the axiom of choice is trivially realized. It is even provable in Martin-Löf’s intuitionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable functions. This logical strength comes at the price of a complicated computational interpretation which involves strong recursion schemes like bar recursion. We take the best from both worlds and define a realizability model for arithmetic and the axiom of choice which encompasses both intuitionistic and classical reasoning. In this model two versions of the axiom of choice can co-exist in a single proof: intuitionistic choice and classical countable choice. We interpret intuitionistic choice efficiently, however its premise cannot come from classical reasoning. Conversely, our version of classical choice is valid in full classical logic, but it is restricted to the countable case and its realizer involves bar recursion. Having both versions allows us to obtain efficient extracted programs while keeping the provability strength of classical logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信