利用概念漂移检测增强短期负荷预测模型的适应性

Yuanfan Ji, Guangchao Geng, Q. Jiang
{"title":"利用概念漂移检测增强短期负荷预测模型的适应性","authors":"Yuanfan Ji, Guangchao Geng, Q. Jiang","doi":"10.1109/ICPSAsia52756.2021.9621522","DOIUrl":null,"url":null,"abstract":"Concept drift refers to the relation between input and target envolves over time in an online supervised learning scenario. With the development of smart grid and smart meter, mass data accessibility poses a huge challenge to learning model adaptability. To address such issue, this paper proposed a model adaptability enhancement approaches based on concept drift detection for short-term forecast model. It exploits canonical correlation analysis to measure mapping relation between input and output of the forecast model. Then the correlation coefficient vector sequence will be monitored over an adaptive window to detect concept drift. Model is updated on data over the sliding window only when a concept drift happens. Experimental results shows this method reduces memory assumption and computing resources remarkably meanwhile guarantees the forecast accuracy.","PeriodicalId":296085,"journal":{"name":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Model Adaptability Using Concept Drift Detection for Short-Term Load Forecast\",\"authors\":\"Yuanfan Ji, Guangchao Geng, Q. Jiang\",\"doi\":\"10.1109/ICPSAsia52756.2021.9621522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept drift refers to the relation between input and target envolves over time in an online supervised learning scenario. With the development of smart grid and smart meter, mass data accessibility poses a huge challenge to learning model adaptability. To address such issue, this paper proposed a model adaptability enhancement approaches based on concept drift detection for short-term forecast model. It exploits canonical correlation analysis to measure mapping relation between input and output of the forecast model. Then the correlation coefficient vector sequence will be monitored over an adaptive window to detect concept drift. Model is updated on data over the sliding window only when a concept drift happens. Experimental results shows this method reduces memory assumption and computing resources remarkably meanwhile guarantees the forecast accuracy.\",\"PeriodicalId\":296085,\"journal\":{\"name\":\"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPSAsia52756.2021.9621522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPSAsia52756.2021.9621522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

概念漂移是指在线监督学习场景中输入和目标之间随时间变化的关系。随着智能电网和智能电表的发展,海量数据的可访问性对学习模型的适应性提出了巨大的挑战。针对这一问题,本文提出了一种基于概念漂移检测的短期预测模型自适应增强方法。它利用典型相关分析来度量预测模型的输入和输出之间的映射关系。然后,相关系数矢量序列将在一个自适应窗口监测,以检测概念漂移。只有当概念漂移发生时,滑动窗口上的数据才会更新模型。实验结果表明,该方法在保证预测精度的同时显著降低了内存假设和计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Model Adaptability Using Concept Drift Detection for Short-Term Load Forecast
Concept drift refers to the relation between input and target envolves over time in an online supervised learning scenario. With the development of smart grid and smart meter, mass data accessibility poses a huge challenge to learning model adaptability. To address such issue, this paper proposed a model adaptability enhancement approaches based on concept drift detection for short-term forecast model. It exploits canonical correlation analysis to measure mapping relation between input and output of the forecast model. Then the correlation coefficient vector sequence will be monitored over an adaptive window to detect concept drift. Model is updated on data over the sliding window only when a concept drift happens. Experimental results shows this method reduces memory assumption and computing resources remarkably meanwhile guarantees the forecast accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信