通用线性最小二乘预测

A. Singer, M. Feder
{"title":"通用线性最小二乘预测","authors":"A. Singer, M. Feder","doi":"10.1109/ISIT.2000.866371","DOIUrl":null,"url":null,"abstract":"An approach to the problem of linear prediction is discussed that is based on previous developments in the universal coding and computational learning theory literature. This development provides a novel perspective on the adaptive filtering problem, and represents a significant departure from traditional adaptive filtering methodologies. In this context, we demonstrate a sequential algorithm for linear prediction whose accumulated squared prediction error, for every possible sequence, is asymptotically as small as the best fixed linear predictor for that sequence.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Universal linear least-squares prediction\",\"authors\":\"A. Singer, M. Feder\",\"doi\":\"10.1109/ISIT.2000.866371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach to the problem of linear prediction is discussed that is based on previous developments in the universal coding and computational learning theory literature. This development provides a novel perspective on the adaptive filtering problem, and represents a significant departure from traditional adaptive filtering methodologies. In this context, we demonstrate a sequential algorithm for linear prediction whose accumulated squared prediction error, for every possible sequence, is asymptotically as small as the best fixed linear predictor for that sequence.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

基于通用编码和计算学习理论文献的先前发展,讨论了线性预测问题的一种方法。这一发展为自适应滤波问题提供了一个新的视角,并代表了对传统自适应滤波方法的重大背离。在这种情况下,我们证明了线性预测的顺序算法,其累积平方预测误差,对于每一个可能的序列,渐近地小于该序列的最佳固定线性预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal linear least-squares prediction
An approach to the problem of linear prediction is discussed that is based on previous developments in the universal coding and computational learning theory literature. This development provides a novel perspective on the adaptive filtering problem, and represents a significant departure from traditional adaptive filtering methodologies. In this context, we demonstrate a sequential algorithm for linear prediction whose accumulated squared prediction error, for every possible sequence, is asymptotically as small as the best fixed linear predictor for that sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信