一种加速时空事件流态势预测的可扩展框架

A. Kammoun, Tanguy Raynaud, Syed Gillani, K. Singh, J. Fayolle, F. Laforest
{"title":"一种加速时空事件流态势预测的可扩展框架","authors":"A. Kammoun, Tanguy Raynaud, Syed Gillani, K. Singh, J. Fayolle, F. Laforest","doi":"10.1145/3210284.3220508","DOIUrl":null,"url":null,"abstract":"This paper presents a generic solution to the spatiotemporal prediction problem provided for the DEBS Grand Challenge 2018. Our solution employs an efficient multi-dimensional index to store the training and historical dataset. With the arrival of new tasks of events, we query our indexing structure to determine the closest points of interests. Based on these points, we select the ones with the highest overall score and predict the destination and time of the vessel in question. Our solution does not rely on existing machine learning techniques and provides a novel view of the prediction problem in the streaming settings. Hence, the prediction is not just based on the recent data, but on all the useful historical dataset.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal Event Streams\",\"authors\":\"A. Kammoun, Tanguy Raynaud, Syed Gillani, K. Singh, J. Fayolle, F. Laforest\",\"doi\":\"10.1145/3210284.3220508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a generic solution to the spatiotemporal prediction problem provided for the DEBS Grand Challenge 2018. Our solution employs an efficient multi-dimensional index to store the training and historical dataset. With the arrival of new tasks of events, we query our indexing structure to determine the closest points of interests. Based on these points, we select the ones with the highest overall score and predict the destination and time of the vessel in question. Our solution does not rely on existing machine learning techniques and provides a novel view of the prediction problem in the streaming settings. Hence, the prediction is not just based on the recent data, but on all the useful historical dataset.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3220508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3220508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了为DEBS 2018大挑战提供的时空预测问题的通用解决方案。我们的解决方案采用高效的多维索引来存储训练和历史数据集。随着新的事件任务的到来,我们查询我们的索引结构来确定最近的兴趣点。基于这些点,我们选择总分最高的点,并预测该船的目的地和时间。我们的解决方案不依赖于现有的机器学习技术,并提供了流设置中预测问题的新视图。因此,预测不仅基于最近的数据,而且基于所有有用的历史数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal Event Streams
This paper presents a generic solution to the spatiotemporal prediction problem provided for the DEBS Grand Challenge 2018. Our solution employs an efficient multi-dimensional index to store the training and historical dataset. With the arrival of new tasks of events, we query our indexing structure to determine the closest points of interests. Based on these points, we select the ones with the highest overall score and predict the destination and time of the vessel in question. Our solution does not rely on existing machine learning techniques and provides a novel view of the prediction problem in the streaming settings. Hence, the prediction is not just based on the recent data, but on all the useful historical dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信