差分进化与Grasshopper优化算法的集成优化

Duangjai Jitkongchuen, Udomlux Ampant
{"title":"差分进化与Grasshopper优化算法的集成优化","authors":"Duangjai Jitkongchuen, Udomlux Ampant","doi":"10.5954/ICAROB.2018.GS3-2","DOIUrl":null,"url":null,"abstract":"This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper. The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic algorithms.","PeriodicalId":157035,"journal":{"name":"J. Robotics Netw. Artif. Life","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated Optimization of Differential Evolution with Grasshopper Optimization Algorithm\",\"authors\":\"Duangjai Jitkongchuen, Udomlux Ampant\",\"doi\":\"10.5954/ICAROB.2018.GS3-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper. The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic algorithms.\",\"PeriodicalId\":157035,\"journal\":{\"name\":\"J. Robotics Netw. Artif. Life\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Robotics Netw. Artif. Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5954/ICAROB.2018.GS3-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Netw. Artif. Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5954/ICAROB.2018.GS3-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种集成蚱蜢优化算法(GOA)来提高差分进化(DE)算法性能的方案。蚱蜢优化算法模拟蚱蜢的行为。蚱蜢的特点是在幼虫期运动缓慢,而在成年期运动突然,似乎是一种探索和剥削。在DE中加入了蚱蜢优化算法的概念,以指导潜在解的搜索过程。通过对单峰和多峰基准优化问题的测试,验证了DE/GOA算法的有效性。结果表明,与其他元启发式算法相比,DE/GOA算法具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Optimization of Differential Evolution with Grasshopper Optimization Algorithm
This paper proposes a scheme to improve the differential evolution (DE) algorithm performance with integrated the grasshopper optimization algorithm (GOA). The grasshopper optimization algorithm mimics the behavior of grasshopper. The characteristic of grasshoppers is slow movement in the larval stage but sudden movement in the adulthood which seem as exploration and exploitation. The grasshopper optimization algorithm concept is added to DE to guide the search process for potential solutions. The efficiency of the DE/GOA is validated by testing on unimodal and multimodal benchmarks optimization problems. The results prove that the DE/GOA algorithm is competitive compared to the other meta-heuristic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信