在LoT边缘启用深度学习

Liangzhen Lai, Naveen Suda
{"title":"在LoT边缘启用深度学习","authors":"Liangzhen Lai, Naveen Suda","doi":"10.1145/3240765.3243473","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms have demonstrated super-human capabilities in many cognitive tasks, such as image classification and speech recognition. As a result, there is an increasing interest in deploying neural networks (NNs) on low-power processors found in always-on systems, such as those based on Arm Cortex-M microcontrollers. In this paper, we discuss the challenges of deploying neural networks on microcontrollers with limited memory, compute resources and power budgets. We introduce CMSIS-NN, a library of optimized software kernels to enable deployment of NNs on Cortex-M cores. We also present techniques for NN algorithm exploration to develop light-weight models suitable for resource constrained systems, using keyword spotting as an example.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"29 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Enabling Deep Learning at the LoT Edge\",\"authors\":\"Liangzhen Lai, Naveen Suda\",\"doi\":\"10.1145/3240765.3243473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning algorithms have demonstrated super-human capabilities in many cognitive tasks, such as image classification and speech recognition. As a result, there is an increasing interest in deploying neural networks (NNs) on low-power processors found in always-on systems, such as those based on Arm Cortex-M microcontrollers. In this paper, we discuss the challenges of deploying neural networks on microcontrollers with limited memory, compute resources and power budgets. We introduce CMSIS-NN, a library of optimized software kernels to enable deployment of NNs on Cortex-M cores. We also present techniques for NN algorithm exploration to develop light-weight models suitable for resource constrained systems, using keyword spotting as an example.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"29 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3243473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3243473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

深度学习算法已经在许多认知任务中展示了超人的能力,比如图像分类和语音识别。因此,人们对将神经网络(nn)部署在低功耗处理器上的兴趣越来越大,这些处理器通常用于始终在线的系统,例如基于Arm Cortex-M微控制器的系统。在本文中,我们讨论了在内存、计算资源和功耗预算有限的微控制器上部署神经网络的挑战。我们介绍了CMSIS-NN,一个优化的软件内核库,可以在Cortex-M内核上部署神经网络。我们还提出了神经网络算法探索技术,以开发适合资源约束系统的轻量级模型,以关键词识别为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Deep Learning at the LoT Edge
Deep learning algorithms have demonstrated super-human capabilities in many cognitive tasks, such as image classification and speech recognition. As a result, there is an increasing interest in deploying neural networks (NNs) on low-power processors found in always-on systems, such as those based on Arm Cortex-M microcontrollers. In this paper, we discuss the challenges of deploying neural networks on microcontrollers with limited memory, compute resources and power budgets. We introduce CMSIS-NN, a library of optimized software kernels to enable deployment of NNs on Cortex-M cores. We also present techniques for NN algorithm exploration to develop light-weight models suitable for resource constrained systems, using keyword spotting as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信