Aharon Bar-Hillel, Amir Di-Nur, L. Ein-Dor, Ran Gilad-Bachrach, Yossi Ittach
{"title":"使用强化学习的工作站容量调整","authors":"Aharon Bar-Hillel, Amir Di-Nur, L. Ein-Dor, Ran Gilad-Bachrach, Yossi Ittach","doi":"10.1145/1362622.1362666","DOIUrl":null,"url":null,"abstract":"Computer grids are complex, heterogeneous, and dynamic systems, whose behavior is governed by hundreds of manually-tuned parameters. As the complexity of these systems grows, automating the procedure of parameter tuning becomes indispensable. In this paper, we consider the problem of auto-tuning server capacity, i.e. the number of jobs a server runs in parallel. We present three different reinforcement learning algorithms, which generate a dynamic policy by changing the number of concurrent running jobs according to the job types and machine state. The algorithms outperform manually-tuned policies for the entire range of checked workloads, with average throughput improvement greater than 20%. On multi-core servers, the average throughput improvement is approximately 40%, which hints at the enormous improvement potential of such a tuning mechanism with the gradual transition to multi-core machines.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Workstation capacity tuning using reinforcement learning\",\"authors\":\"Aharon Bar-Hillel, Amir Di-Nur, L. Ein-Dor, Ran Gilad-Bachrach, Yossi Ittach\",\"doi\":\"10.1145/1362622.1362666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer grids are complex, heterogeneous, and dynamic systems, whose behavior is governed by hundreds of manually-tuned parameters. As the complexity of these systems grows, automating the procedure of parameter tuning becomes indispensable. In this paper, we consider the problem of auto-tuning server capacity, i.e. the number of jobs a server runs in parallel. We present three different reinforcement learning algorithms, which generate a dynamic policy by changing the number of concurrent running jobs according to the job types and machine state. The algorithms outperform manually-tuned policies for the entire range of checked workloads, with average throughput improvement greater than 20%. On multi-core servers, the average throughput improvement is approximately 40%, which hints at the enormous improvement potential of such a tuning mechanism with the gradual transition to multi-core machines.\",\"PeriodicalId\":274744,\"journal\":{\"name\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1362622.1362666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Workstation capacity tuning using reinforcement learning
Computer grids are complex, heterogeneous, and dynamic systems, whose behavior is governed by hundreds of manually-tuned parameters. As the complexity of these systems grows, automating the procedure of parameter tuning becomes indispensable. In this paper, we consider the problem of auto-tuning server capacity, i.e. the number of jobs a server runs in parallel. We present three different reinforcement learning algorithms, which generate a dynamic policy by changing the number of concurrent running jobs according to the job types and machine state. The algorithms outperform manually-tuned policies for the entire range of checked workloads, with average throughput improvement greater than 20%. On multi-core servers, the average throughput improvement is approximately 40%, which hints at the enormous improvement potential of such a tuning mechanism with the gradual transition to multi-core machines.