A. Santamaria, M. Tropea, P. Fazio, P. Raimondo, F. Rango, M. Voznák
{"title":"分散式ITS架构,有效分配交通任务管理","authors":"A. Santamaria, M. Tropea, P. Fazio, P. Raimondo, F. Rango, M. Voznák","doi":"10.23919/WMNC.2018.8480933","DOIUrl":null,"url":null,"abstract":"In this paper, the attention is focused on the design of a new multi-layered architecture for vehicular environment. System will be able to gather information from vehicular devices. This will allow system to faster respond at emergency situation such as traffic jams or collisions. Distributed entities work at different layers exploiting cloud and fog computing in order to better distribute tasks along the infrastructure. Lower layer is composed of On-Board Units (OBUs) and RoadSide Units (RSUs) that exploits Vehicular Ad-hoc Network (VANET) protocols for inner VANET communications. At the Edge layer we propose fog computing nodes that gather data from RSUs for local processing and after an aggregation step they send data to an Intelligent Transportation System (ITS) management system. The proposed architecture has the main goal to better respond to the network and traffic dynamics by improving performances of the ITS system.","PeriodicalId":274628,"journal":{"name":"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)","volume":"112 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A decentralized ITS architecture for efficient distribution of traffic task management\",\"authors\":\"A. Santamaria, M. Tropea, P. Fazio, P. Raimondo, F. Rango, M. Voznák\",\"doi\":\"10.23919/WMNC.2018.8480933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the attention is focused on the design of a new multi-layered architecture for vehicular environment. System will be able to gather information from vehicular devices. This will allow system to faster respond at emergency situation such as traffic jams or collisions. Distributed entities work at different layers exploiting cloud and fog computing in order to better distribute tasks along the infrastructure. Lower layer is composed of On-Board Units (OBUs) and RoadSide Units (RSUs) that exploits Vehicular Ad-hoc Network (VANET) protocols for inner VANET communications. At the Edge layer we propose fog computing nodes that gather data from RSUs for local processing and after an aggregation step they send data to an Intelligent Transportation System (ITS) management system. The proposed architecture has the main goal to better respond to the network and traffic dynamics by improving performances of the ITS system.\",\"PeriodicalId\":274628,\"journal\":{\"name\":\"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)\",\"volume\":\"112 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WMNC.2018.8480933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WMNC.2018.8480933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A decentralized ITS architecture for efficient distribution of traffic task management
In this paper, the attention is focused on the design of a new multi-layered architecture for vehicular environment. System will be able to gather information from vehicular devices. This will allow system to faster respond at emergency situation such as traffic jams or collisions. Distributed entities work at different layers exploiting cloud and fog computing in order to better distribute tasks along the infrastructure. Lower layer is composed of On-Board Units (OBUs) and RoadSide Units (RSUs) that exploits Vehicular Ad-hoc Network (VANET) protocols for inner VANET communications. At the Edge layer we propose fog computing nodes that gather data from RSUs for local processing and after an aggregation step they send data to an Intelligent Transportation System (ITS) management system. The proposed architecture has the main goal to better respond to the network and traffic dynamics by improving performances of the ITS system.