在时频域结合ICA和VD-CDWT的真实世界源分离

Zhong Zhang, Yasudake Aoki, H. Toda, T. Miyake, T. Imamura
{"title":"在时频域结合ICA和VD-CDWT的真实世界源分离","authors":"Zhong Zhang, Yasudake Aoki, H. Toda, T. Miyake, T. Imamura","doi":"10.1109/ICWAPR.2009.5207450","DOIUrl":null,"url":null,"abstract":"It is well known that in real world source separation, the environment noise removal must be considered with complex reverberating sound, and various noises. In this study, in order to improve the voice recognition accuracy in real world source separation, a new method that uses Independent Component Analysis (ICA) in the time-frequency domain using the variable density complex discrete wavelet transform (VD-CDWT) and the subspace method has been proposed. Through comparison of the results according to signal noise ratio (SNR), the effectiveness of the proposed method is confirmed.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"162 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real world source separation by combining ICA and VD-CDWT in time-frequency domain\",\"authors\":\"Zhong Zhang, Yasudake Aoki, H. Toda, T. Miyake, T. Imamura\",\"doi\":\"10.1109/ICWAPR.2009.5207450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that in real world source separation, the environment noise removal must be considered with complex reverberating sound, and various noises. In this study, in order to improve the voice recognition accuracy in real world source separation, a new method that uses Independent Component Analysis (ICA) in the time-frequency domain using the variable density complex discrete wavelet transform (VD-CDWT) and the subspace method has been proposed. Through comparison of the results according to signal noise ratio (SNR), the effectiveness of the proposed method is confirmed.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"162 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,在现实世界的声源分离中,必须考虑复杂混响声和各种噪声的环境噪声去除。为了提高现实世界中语音分离的识别精度,提出了一种基于变密度复离散小波变换(VD-CDWT)和子空间方法的时频独立分量分析(ICA)方法。根据信噪比(SNR)对结果进行比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real world source separation by combining ICA and VD-CDWT in time-frequency domain
It is well known that in real world source separation, the environment noise removal must be considered with complex reverberating sound, and various noises. In this study, in order to improve the voice recognition accuracy in real world source separation, a new method that uses Independent Component Analysis (ICA) in the time-frequency domain using the variable density complex discrete wavelet transform (VD-CDWT) and the subspace method has been proposed. Through comparison of the results according to signal noise ratio (SNR), the effectiveness of the proposed method is confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信