{"title":"磁场作用下光纤陀螺INS多位置对准的方位效应研究","authors":"Renda Lei, Du Jian-bang, Han Li-jun","doi":"10.1109/INERTIALSENSORS.2014.7049476","DOIUrl":null,"url":null,"abstract":"Due to its working mechanism, characteristics of the Fiber Optic Gyro (FOG) appear to be severely affected by ambient magnetic fields. Bias sensitivity to magnetic fields is an important parameter of FOG. Internal and external magnetic fields of inertial navigation system (INS) based on FOG both can cause gyro drift error. This will bring precision degradation during alignment of INS. To eliminate alignment error caused by magnetic fields and improve the performance of INS, based on magnetic fields distribution analysis of the system, a novel multi-position alignment process which substantially utilizing rotation ability of the INS with inertial measurement unit (IMU) indexing for error modulation is proposed. Experiments on different initial azimuth indicate that the method is effective. In addition, residual alignment error is discussed.","PeriodicalId":371540,"journal":{"name":"2014 DGON Inertial Sensors and Systems (ISS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation on azimuth effect of FOG INS multi-position alignment in magnetic field\",\"authors\":\"Renda Lei, Du Jian-bang, Han Li-jun\",\"doi\":\"10.1109/INERTIALSENSORS.2014.7049476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its working mechanism, characteristics of the Fiber Optic Gyro (FOG) appear to be severely affected by ambient magnetic fields. Bias sensitivity to magnetic fields is an important parameter of FOG. Internal and external magnetic fields of inertial navigation system (INS) based on FOG both can cause gyro drift error. This will bring precision degradation during alignment of INS. To eliminate alignment error caused by magnetic fields and improve the performance of INS, based on magnetic fields distribution analysis of the system, a novel multi-position alignment process which substantially utilizing rotation ability of the INS with inertial measurement unit (IMU) indexing for error modulation is proposed. Experiments on different initial azimuth indicate that the method is effective. In addition, residual alignment error is discussed.\",\"PeriodicalId\":371540,\"journal\":{\"name\":\"2014 DGON Inertial Sensors and Systems (ISS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 DGON Inertial Sensors and Systems (ISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIALSENSORS.2014.7049476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 DGON Inertial Sensors and Systems (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIALSENSORS.2014.7049476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation on azimuth effect of FOG INS multi-position alignment in magnetic field
Due to its working mechanism, characteristics of the Fiber Optic Gyro (FOG) appear to be severely affected by ambient magnetic fields. Bias sensitivity to magnetic fields is an important parameter of FOG. Internal and external magnetic fields of inertial navigation system (INS) based on FOG both can cause gyro drift error. This will bring precision degradation during alignment of INS. To eliminate alignment error caused by magnetic fields and improve the performance of INS, based on magnetic fields distribution analysis of the system, a novel multi-position alignment process which substantially utilizing rotation ability of the INS with inertial measurement unit (IMU) indexing for error modulation is proposed. Experiments on different initial azimuth indicate that the method is effective. In addition, residual alignment error is discussed.