{"title":"生物医学用溶胶-凝胶羟基磷灰石-森林石-生物活性玻璃纳米复合涂层的制备与表征","authors":"M. M. Sebdani, M. Fathi","doi":"10.1109/ICBME.2010.5705011","DOIUrl":null,"url":null,"abstract":"Fabrication and characterization of hydroxyapatite-forsterite-bioactive glass nanocomposite coating was the aim of this work. The sol-gel technique was used to perform hydroxyapatite-forsterite-bioactive glass nanocomposite coating on 316L stainless steel (SS). The X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used to investigate the microstructure and morphology of the coating. Results show that the suitable temperature for calcination was 600 °C. At this temperature, the homogenous and crack-free coating could attach to the 316L SS substrate. The result of EDX analysis of hydroxyapatite-forsterite-bioglass coated 316L SS surface indicated the consisting elements of prepared hydroxyapatite-forsterite-bioglass nanocomposite coating and the substrate. Hydroxyapatite-forsterite-bioactive glass nanocomposite coating might be a good candidate for biomedical application.","PeriodicalId":377764,"journal":{"name":"2010 17th Iranian Conference of Biomedical Engineering (ICBME)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fabrication and characterization of sol-gel hydroxyapatite-forsterite-bioactive glass nanocomposite coating for biomedical applications\",\"authors\":\"M. M. Sebdani, M. Fathi\",\"doi\":\"10.1109/ICBME.2010.5705011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fabrication and characterization of hydroxyapatite-forsterite-bioactive glass nanocomposite coating was the aim of this work. The sol-gel technique was used to perform hydroxyapatite-forsterite-bioactive glass nanocomposite coating on 316L stainless steel (SS). The X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used to investigate the microstructure and morphology of the coating. Results show that the suitable temperature for calcination was 600 °C. At this temperature, the homogenous and crack-free coating could attach to the 316L SS substrate. The result of EDX analysis of hydroxyapatite-forsterite-bioglass coated 316L SS surface indicated the consisting elements of prepared hydroxyapatite-forsterite-bioglass nanocomposite coating and the substrate. Hydroxyapatite-forsterite-bioactive glass nanocomposite coating might be a good candidate for biomedical application.\",\"PeriodicalId\":377764,\"journal\":{\"name\":\"2010 17th Iranian Conference of Biomedical Engineering (ICBME)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th Iranian Conference of Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2010.5705011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th Iranian Conference of Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2010.5705011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and characterization of sol-gel hydroxyapatite-forsterite-bioactive glass nanocomposite coating for biomedical applications
Fabrication and characterization of hydroxyapatite-forsterite-bioactive glass nanocomposite coating was the aim of this work. The sol-gel technique was used to perform hydroxyapatite-forsterite-bioactive glass nanocomposite coating on 316L stainless steel (SS). The X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used to investigate the microstructure and morphology of the coating. Results show that the suitable temperature for calcination was 600 °C. At this temperature, the homogenous and crack-free coating could attach to the 316L SS substrate. The result of EDX analysis of hydroxyapatite-forsterite-bioglass coated 316L SS surface indicated the consisting elements of prepared hydroxyapatite-forsterite-bioglass nanocomposite coating and the substrate. Hydroxyapatite-forsterite-bioactive glass nanocomposite coating might be a good candidate for biomedical application.