{"title":"应用于高分辨率磁场传感器的磁光光纤布拉格光栅","authors":"Baojian Wu, Kun Qiu, Ying Yang","doi":"10.1109/APOS.2008.5226308","DOIUrl":null,"url":null,"abstract":"As a new class of fiber Bragg gratings, magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/ (kA/m) is predicted.","PeriodicalId":154236,"journal":{"name":"2008 1st Asia-Pacific Optical Fiber Sensors Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors\",\"authors\":\"Baojian Wu, Kun Qiu, Ying Yang\",\"doi\":\"10.1109/APOS.2008.5226308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new class of fiber Bragg gratings, magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/ (kA/m) is predicted.\",\"PeriodicalId\":154236,\"journal\":{\"name\":\"2008 1st Asia-Pacific Optical Fiber Sensors Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 1st Asia-Pacific Optical Fiber Sensors Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APOS.2008.5226308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st Asia-Pacific Optical Fiber Sensors Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APOS.2008.5226308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors
As a new class of fiber Bragg gratings, magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/ (kA/m) is predicted.