wijesekera风格的构造模态逻辑

Tiziano Dalmonte
{"title":"wijesekera风格的构造模态逻辑","authors":"Tiziano Dalmonte","doi":"10.48550/arXiv.2210.09937","DOIUrl":null,"url":null,"abstract":"We define a family of propositional constructive modal logics corresponding each to a different classical modal system. The logics are defined in the style of Wijesekera's constructive modal logic, and are both proof-theoretically and semantically motivated. On the one hand, they correspond to the single-succedent restriction of standard sequent calculi for classical modal logics. On the other hand, they are obtained by incorporating the hereditariness of intuitionistic Kripke models into the classical satisfaction clauses for modal formulas. We show that, for the considered classical logics, the proof-theoretical and the semantical approach return the same constructive systems.","PeriodicalId":129696,"journal":{"name":"Advances in Modal Logic","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wijesekera-style constructive modal logics\",\"authors\":\"Tiziano Dalmonte\",\"doi\":\"10.48550/arXiv.2210.09937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a family of propositional constructive modal logics corresponding each to a different classical modal system. The logics are defined in the style of Wijesekera's constructive modal logic, and are both proof-theoretically and semantically motivated. On the one hand, they correspond to the single-succedent restriction of standard sequent calculi for classical modal logics. On the other hand, they are obtained by incorporating the hereditariness of intuitionistic Kripke models into the classical satisfaction clauses for modal formulas. We show that, for the considered classical logics, the proof-theoretical and the semantical approach return the same constructive systems.\",\"PeriodicalId\":129696,\"journal\":{\"name\":\"Advances in Modal Logic\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Modal Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.09937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Modal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.09937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了一组命题构式模态逻辑,每个逻辑对应于一个不同的经典模态系统。逻辑以Wijesekera的构造模态逻辑的风格定义,并且具有理论证明和语义动机。一方面,它们对应于经典模态逻辑标准序演算的单后继限制。另一方面,它们是通过将直觉主义Kripke模型的遗传性纳入经典模态公式的满足子句而得到的。我们表明,对于所考虑的经典逻辑,证明理论方法和语义方法返回相同的构造系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wijesekera-style constructive modal logics
We define a family of propositional constructive modal logics corresponding each to a different classical modal system. The logics are defined in the style of Wijesekera's constructive modal logic, and are both proof-theoretically and semantically motivated. On the one hand, they correspond to the single-succedent restriction of standard sequent calculi for classical modal logics. On the other hand, they are obtained by incorporating the hereditariness of intuitionistic Kripke models into the classical satisfaction clauses for modal formulas. We show that, for the considered classical logics, the proof-theoretical and the semantical approach return the same constructive systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信