一种新颖的视频半监督人脸识别方法

Ke Lu, Zhengming Ding, Jidong Zhao, Yue Wu
{"title":"一种新颖的视频半监督人脸识别方法","authors":"Ke Lu, Zhengming Ding, Jidong Zhao, Yue Wu","doi":"10.1109/ICICIP.2010.5564344","DOIUrl":null,"url":null,"abstract":"Video-based face recognition has been one of the hot topics in the field of pattern recognition in the last few decades. In this paper, incorporating Support Vector Machines (SVM) and Locality Preserving Projections (LPP), we propose a novel semi-supervised face recognition algorithm for video, which can discover more space-time semantic information hidden in video face sequence, simultaneously make full use of the small amount of labeled data with the plentiful unknown information and the intrinsic nonlinear structure information to extract discriminative manifold features. We also compare our algorithm with other algorithms on UCSD/Honda Video Database. The experimental results show that the proposed algorithm can outperform state-of-the-art solutions for videobased face recognition.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A novel semi-supervised face recognition for video\",\"authors\":\"Ke Lu, Zhengming Ding, Jidong Zhao, Yue Wu\",\"doi\":\"10.1109/ICICIP.2010.5564344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-based face recognition has been one of the hot topics in the field of pattern recognition in the last few decades. In this paper, incorporating Support Vector Machines (SVM) and Locality Preserving Projections (LPP), we propose a novel semi-supervised face recognition algorithm for video, which can discover more space-time semantic information hidden in video face sequence, simultaneously make full use of the small amount of labeled data with the plentiful unknown information and the intrinsic nonlinear structure information to extract discriminative manifold features. We also compare our algorithm with other algorithms on UCSD/Honda Video Database. The experimental results show that the proposed algorithm can outperform state-of-the-art solutions for videobased face recognition.\",\"PeriodicalId\":152024,\"journal\":{\"name\":\"2010 International Conference on Intelligent Control and Information Processing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2010.5564344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5564344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基于视频的人脸识别是近几十年来模式识别领域的研究热点之一。本文将支持向量机(SVM)和局域保持投影(Locality Preserving Projections, LPP)相结合,提出了一种新的视频人脸半监督识别算法,该算法能够发现隐藏在视频人脸序列中的更多时空语义信息,同时充分利用少量未知信息丰富的标记数据和固有的非线性结构信息提取判别流形特征。并在UCSD/Honda视频数据库上与其他算法进行了比较。实验结果表明,该算法优于当前基于视频的人脸识别解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel semi-supervised face recognition for video
Video-based face recognition has been one of the hot topics in the field of pattern recognition in the last few decades. In this paper, incorporating Support Vector Machines (SVM) and Locality Preserving Projections (LPP), we propose a novel semi-supervised face recognition algorithm for video, which can discover more space-time semantic information hidden in video face sequence, simultaneously make full use of the small amount of labeled data with the plentiful unknown information and the intrinsic nonlinear structure information to extract discriminative manifold features. We also compare our algorithm with other algorithms on UCSD/Honda Video Database. The experimental results show that the proposed algorithm can outperform state-of-the-art solutions for videobased face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信