不规则采样频率响应函数的卷积神经网络插值

M. Acerbi, R. Malvermi, Mirco Pezzoli, F. Antonacci, A. Sarti, R. Corradi
{"title":"不规则采样频率响应函数的卷积神经网络插值","authors":"M. Acerbi, R. Malvermi, Mirco Pezzoli, F. Antonacci, A. Sarti, R. Corradi","doi":"10.1109/ICASSP39728.2021.9413458","DOIUrl":null,"url":null,"abstract":"In the field of structural mechanics, classical methods for the vibrational characterization of objects exploit the inherent redundancy of a relevant amount of measurements acquired over regular sampling grids. However, there are cases in which parts of the objects under analysis are not accessible with sensors, leading to irregular sampling grids characterized by holes. Recent works have proved the benefits of adding prior knowledge in these scenarios, either through the definition of a suitable decomposition or using Finite Element modelling. In this paper we propose to use Convolutional Autoencoders (CA) for Frequency Response Function (FRF) interpolation from grids with different subsampling schemes. CA learn a compressed representation from a dataset of FRFs synthetized through Finite Element Analysis. Experiments with numerical and experimental data show the effectiveness of the model with a different amount of missing data and its ability to predict real FRFs characterized by different damping and sampling frequency.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interpolation of Irregularly Sampled Frequency Response Functions Using Convolutional Neural Networks\",\"authors\":\"M. Acerbi, R. Malvermi, Mirco Pezzoli, F. Antonacci, A. Sarti, R. Corradi\",\"doi\":\"10.1109/ICASSP39728.2021.9413458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of structural mechanics, classical methods for the vibrational characterization of objects exploit the inherent redundancy of a relevant amount of measurements acquired over regular sampling grids. However, there are cases in which parts of the objects under analysis are not accessible with sensors, leading to irregular sampling grids characterized by holes. Recent works have proved the benefits of adding prior knowledge in these scenarios, either through the definition of a suitable decomposition or using Finite Element modelling. In this paper we propose to use Convolutional Autoencoders (CA) for Frequency Response Function (FRF) interpolation from grids with different subsampling schemes. CA learn a compressed representation from a dataset of FRFs synthetized through Finite Element Analysis. Experiments with numerical and experimental data show the effectiveness of the model with a different amount of missing data and its ability to predict real FRFs characterized by different damping and sampling frequency.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在结构力学领域,用于物体振动表征的经典方法利用了在规则采样网格上获得的相关测量量的固有冗余。然而,在某些情况下,被分析对象的某些部分无法使用传感器,从而导致以孔洞为特征的不规则采样网格。最近的工作已经证明了在这些场景中添加先验知识的好处,无论是通过定义合适的分解还是使用有限元建模。在本文中,我们提出使用卷积自编码器(CA)对具有不同子采样方案的网格进行频响函数(FRF)插值。CA从通过有限元分析合成的frf数据集中学习压缩表示。通过数值和实验数据验证了该模型在不同缺失数据量下的有效性以及对不同阻尼和采样频率下真实频响的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation of Irregularly Sampled Frequency Response Functions Using Convolutional Neural Networks
In the field of structural mechanics, classical methods for the vibrational characterization of objects exploit the inherent redundancy of a relevant amount of measurements acquired over regular sampling grids. However, there are cases in which parts of the objects under analysis are not accessible with sensors, leading to irregular sampling grids characterized by holes. Recent works have proved the benefits of adding prior knowledge in these scenarios, either through the definition of a suitable decomposition or using Finite Element modelling. In this paper we propose to use Convolutional Autoencoders (CA) for Frequency Response Function (FRF) interpolation from grids with different subsampling schemes. CA learn a compressed representation from a dataset of FRFs synthetized through Finite Element Analysis. Experiments with numerical and experimental data show the effectiveness of the model with a different amount of missing data and its ability to predict real FRFs characterized by different damping and sampling frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信