M. Acerbi, R. Malvermi, Mirco Pezzoli, F. Antonacci, A. Sarti, R. Corradi
{"title":"不规则采样频率响应函数的卷积神经网络插值","authors":"M. Acerbi, R. Malvermi, Mirco Pezzoli, F. Antonacci, A. Sarti, R. Corradi","doi":"10.1109/ICASSP39728.2021.9413458","DOIUrl":null,"url":null,"abstract":"In the field of structural mechanics, classical methods for the vibrational characterization of objects exploit the inherent redundancy of a relevant amount of measurements acquired over regular sampling grids. However, there are cases in which parts of the objects under analysis are not accessible with sensors, leading to irregular sampling grids characterized by holes. Recent works have proved the benefits of adding prior knowledge in these scenarios, either through the definition of a suitable decomposition or using Finite Element modelling. In this paper we propose to use Convolutional Autoencoders (CA) for Frequency Response Function (FRF) interpolation from grids with different subsampling schemes. CA learn a compressed representation from a dataset of FRFs synthetized through Finite Element Analysis. Experiments with numerical and experimental data show the effectiveness of the model with a different amount of missing data and its ability to predict real FRFs characterized by different damping and sampling frequency.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interpolation of Irregularly Sampled Frequency Response Functions Using Convolutional Neural Networks\",\"authors\":\"M. Acerbi, R. Malvermi, Mirco Pezzoli, F. Antonacci, A. Sarti, R. Corradi\",\"doi\":\"10.1109/ICASSP39728.2021.9413458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of structural mechanics, classical methods for the vibrational characterization of objects exploit the inherent redundancy of a relevant amount of measurements acquired over regular sampling grids. However, there are cases in which parts of the objects under analysis are not accessible with sensors, leading to irregular sampling grids characterized by holes. Recent works have proved the benefits of adding prior knowledge in these scenarios, either through the definition of a suitable decomposition or using Finite Element modelling. In this paper we propose to use Convolutional Autoencoders (CA) for Frequency Response Function (FRF) interpolation from grids with different subsampling schemes. CA learn a compressed representation from a dataset of FRFs synthetized through Finite Element Analysis. Experiments with numerical and experimental data show the effectiveness of the model with a different amount of missing data and its ability to predict real FRFs characterized by different damping and sampling frequency.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interpolation of Irregularly Sampled Frequency Response Functions Using Convolutional Neural Networks
In the field of structural mechanics, classical methods for the vibrational characterization of objects exploit the inherent redundancy of a relevant amount of measurements acquired over regular sampling grids. However, there are cases in which parts of the objects under analysis are not accessible with sensors, leading to irregular sampling grids characterized by holes. Recent works have proved the benefits of adding prior knowledge in these scenarios, either through the definition of a suitable decomposition or using Finite Element modelling. In this paper we propose to use Convolutional Autoencoders (CA) for Frequency Response Function (FRF) interpolation from grids with different subsampling schemes. CA learn a compressed representation from a dataset of FRFs synthetized through Finite Element Analysis. Experiments with numerical and experimental data show the effectiveness of the model with a different amount of missing data and its ability to predict real FRFs characterized by different damping and sampling frequency.