云平台重构的多目标进化算法

Francois Legillon, N. Melab, Didier Renard, E. Talbi
{"title":"云平台重构的多目标进化算法","authors":"Francois Legillon, N. Melab, Didier Renard, E. Talbi","doi":"10.1109/IPDPSW.2015.138","DOIUrl":null,"url":null,"abstract":"Offers of public IAAS providers often vary: new providers enter the market, existing ones change their pricing or improve their offering. Decision on whether and how to improve already deployed platforms, either by reconfiguration or migration to another provider, can be seen as a NP-hard optimization problem. In this paper, we define a new realistic model for this Migration Problem, based on a Multi-Objective Optimization formulation. An evolutionary approach is introduced to tackle the problem, using specific operators. Experiments are conducted on multiple realistic data-sets, showing that the evolutionary approach is viable to tackle real-size instances in a reasonable amount of time.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Multi-objective Evolutionary Algorithm for Cloud Platform Reconfiguration\",\"authors\":\"Francois Legillon, N. Melab, Didier Renard, E. Talbi\",\"doi\":\"10.1109/IPDPSW.2015.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offers of public IAAS providers often vary: new providers enter the market, existing ones change their pricing or improve their offering. Decision on whether and how to improve already deployed platforms, either by reconfiguration or migration to another provider, can be seen as a NP-hard optimization problem. In this paper, we define a new realistic model for this Migration Problem, based on a Multi-Objective Optimization formulation. An evolutionary approach is introduced to tackle the problem, using specific operators. Experiments are conducted on multiple realistic data-sets, showing that the evolutionary approach is viable to tackle real-size instances in a reasonable amount of time.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

公共IAAS提供商提供的服务经常变化:新的提供商进入市场,现有的提供商改变其定价或改进其产品。决定是否以及如何通过重新配置或迁移到另一个提供商来改进已经部署的平台,可以被视为NP-hard优化问题。本文在多目标优化的基础上,定义了一种新的求解该迁移问题的现实模型。引入了一种进化的方法来解决这个问题,使用特定的操作符。在多个真实数据集上进行了实验,表明进化方法在合理的时间内处理真实尺寸的实例是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-objective Evolutionary Algorithm for Cloud Platform Reconfiguration
Offers of public IAAS providers often vary: new providers enter the market, existing ones change their pricing or improve their offering. Decision on whether and how to improve already deployed platforms, either by reconfiguration or migration to another provider, can be seen as a NP-hard optimization problem. In this paper, we define a new realistic model for this Migration Problem, based on a Multi-Objective Optimization formulation. An evolutionary approach is introduced to tackle the problem, using specific operators. Experiments are conducted on multiple realistic data-sets, showing that the evolutionary approach is viable to tackle real-size instances in a reasonable amount of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信