基于蚁群算法的电网规划

Xun C. Huang, Z. Liu, X. Huo, Jian Tang, Zhi-An Yan, Huan Qi
{"title":"基于蚁群算法的电网规划","authors":"Xun C. Huang, Z. Liu, X. Huo, Jian Tang, Zhi-An Yan, Huan Qi","doi":"10.1109/BICTA.2009.5338087","DOIUrl":null,"url":null,"abstract":"At present, mathematic model for power grid program has more requirement, traditional method can't fulfil it. Ant colony algorithm has been successfully used to solve NP problem in many fields. In this paper, a new ant colony algorithm of improving key parameters to solve power network planning is presented. For a given power network model, this algorithm will find out the best routing path only if it exits. Some examples show that this algorithm is more intelligent and efficient than other ones.","PeriodicalId":161787,"journal":{"name":"2009 Fourth International on Conference on Bio-Inspired Computing","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power network planning with ant colony algorithm\",\"authors\":\"Xun C. Huang, Z. Liu, X. Huo, Jian Tang, Zhi-An Yan, Huan Qi\",\"doi\":\"10.1109/BICTA.2009.5338087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, mathematic model for power grid program has more requirement, traditional method can't fulfil it. Ant colony algorithm has been successfully used to solve NP problem in many fields. In this paper, a new ant colony algorithm of improving key parameters to solve power network planning is presented. For a given power network model, this algorithm will find out the best routing path only if it exits. Some examples show that this algorithm is more intelligent and efficient than other ones.\",\"PeriodicalId\":161787,\"journal\":{\"name\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2009.5338087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International on Conference on Bio-Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2009.5338087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,对电网规划数学模型的要求越来越高,传统的方法已不能满足要求。蚁群算法已成功地应用于许多领域的NP问题求解。本文提出了一种改进关键参数的蚁群算法来求解电网规划问题。对于给定的电网模型,该算法只在存在时才会找出最优路由路径。算例表明,该算法比其他算法具有更高的智能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power network planning with ant colony algorithm
At present, mathematic model for power grid program has more requirement, traditional method can't fulfil it. Ant colony algorithm has been successfully used to solve NP problem in many fields. In this paper, a new ant colony algorithm of improving key parameters to solve power network planning is presented. For a given power network model, this algorithm will find out the best routing path only if it exits. Some examples show that this algorithm is more intelligent and efficient than other ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信