社区问答服务中问题的主题提取与分类

Q. Ma, M. Murata
{"title":"社区问答服务中问题的主题提取与分类","authors":"Q. Ma, M. Murata","doi":"10.1109/CSCI49370.2019.00253","DOIUrl":null,"url":null,"abstract":"This paper presents methods of simultaneously performing topic/keyword extraction and unsupervised classification for questions posted in community-based question answering services (CQA) or Q&A websites, using topic models and hybrid models. Large-scale experiments on two kinds of data, one called category data and the other called subtyping data, show the effectiveness of our methods. The purity and correct rate show that the topic models outperform clustering methods, hybrid models outperform topic models in question classification, and the adoption of term frequency-inverse document frequency is effective for the subtyping data. Manual evaluations with the extracted keywords show the effectiveness of the topic models in topic extraction.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topic Extraction and Classification for Questions Posted in Community-Based Question Answering Services\",\"authors\":\"Q. Ma, M. Murata\",\"doi\":\"10.1109/CSCI49370.2019.00253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents methods of simultaneously performing topic/keyword extraction and unsupervised classification for questions posted in community-based question answering services (CQA) or Q&A websites, using topic models and hybrid models. Large-scale experiments on two kinds of data, one called category data and the other called subtyping data, show the effectiveness of our methods. The purity and correct rate show that the topic models outperform clustering methods, hybrid models outperform topic models in question classification, and the adoption of term frequency-inverse document frequency is effective for the subtyping data. Manual evaluations with the extracted keywords show the effectiveness of the topic models in topic extraction.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了利用主题模型和混合模型对基于社区的问答服务(CQA)或问答网站上发布的问题同时进行主题/关键词提取和无监督分类的方法。在两种数据上的大规模实验,一种是类别数据,另一种是亚型数据,表明了我们的方法的有效性。纯度和正确率表明,主题模型在问题分类方面优于聚类方法,混合模型在问题分类方面优于主题模型,采用词频-逆文档频率对子类型数据是有效的。用提取的关键词进行人工评价,表明了主题模型在主题提取中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic Extraction and Classification for Questions Posted in Community-Based Question Answering Services
This paper presents methods of simultaneously performing topic/keyword extraction and unsupervised classification for questions posted in community-based question answering services (CQA) or Q&A websites, using topic models and hybrid models. Large-scale experiments on two kinds of data, one called category data and the other called subtyping data, show the effectiveness of our methods. The purity and correct rate show that the topic models outperform clustering methods, hybrid models outperform topic models in question classification, and the adoption of term frequency-inverse document frequency is effective for the subtyping data. Manual evaluations with the extracted keywords show the effectiveness of the topic models in topic extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信