FNS和HEIV:两种视觉参数估计框架

W. Chojnacki, M. Brooks, A. Hengel, D. Gawley
{"title":"FNS和HEIV:两种视觉参数估计框架","authors":"W. Chojnacki, M. Brooks, A. Hengel, D. Gawley","doi":"10.1109/ICIAP.2003.1234042","DOIUrl":null,"url":null,"abstract":"Problems requiring accurate determination of parameters from image-based quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here it is shown that FNS (fundamental numerical scheme) and a core version of HEIV (heteroscedastic errors-in-variables) are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalised eigenvalue problem, and effectively leads to a new derivation of the relevant case of the HEIV algorithm. This work may be seen as an extension of previous efforts to rationalise and inter-relate a spectrum of estimators, including the renormalisation method of Kanatani and the normalised eight-point method of Hartley.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FNS and HEIV: relating two vision parameter estimation frameworks\",\"authors\":\"W. Chojnacki, M. Brooks, A. Hengel, D. Gawley\",\"doi\":\"10.1109/ICIAP.2003.1234042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems requiring accurate determination of parameters from image-based quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here it is shown that FNS (fundamental numerical scheme) and a core version of HEIV (heteroscedastic errors-in-variables) are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalised eigenvalue problem, and effectively leads to a new derivation of the relevant case of the HEIV algorithm. This work may be seen as an extension of previous efforts to rationalise and inter-relate a spectrum of estimators, including the renormalisation method of Kanatani and the normalised eight-point method of Hartley.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

需要从基于图像的量中精确确定参数的问题经常出现在计算机视觉中。两个最近独立开发的估计这些参数的框架是FNS和HEIV方案。本文表明,FNS(基本数值格式)和HEIV(异方差变量误差)的核心版本本质上是等效的,通过不同的方法求解一个共同的底层方程。该分析是由寻找某个广义特征值问题的非退化形式驱动的,并有效地推导出HEIV算法的相关案例。这项工作可以看作是以前的努力的延伸,以合理化和相互关联的频谱估计,包括Kanatani的重整方法和Hartley的规范化八点方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FNS and HEIV: relating two vision parameter estimation frameworks
Problems requiring accurate determination of parameters from image-based quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here it is shown that FNS (fundamental numerical scheme) and a core version of HEIV (heteroscedastic errors-in-variables) are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalised eigenvalue problem, and effectively leads to a new derivation of the relevant case of the HEIV algorithm. This work may be seen as an extension of previous efforts to rationalise and inter-relate a spectrum of estimators, including the renormalisation method of Kanatani and the normalised eight-point method of Hartley.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信