{"title":"热到视觉人脸识别使用迁移学习","authors":"Yaswanth Gavini, B. Mehtre, A. Agarwal","doi":"10.1109/ISBA.2019.8778474","DOIUrl":null,"url":null,"abstract":"Inter-modality face recognition refers to the matching of face images between different modalities and is done usually by taking visual images as source and one of the other modalities as a target. Performing facial recognition between thermal to visual is a tough task because of nonlinear spectral characteristics of thermal and visual images. However, this is a desirable requirement for night-time security applications and military surveillance. In this paper, we propose a method to improve the thermal classifier accuracy by using transfer learning and as a result, the accuracy of thermal to visual face recognition gets increased. The proposed method is tested on RGB-D-T dataset (45900 images) and UND-Xl collection (4584 images). Experimental results show that the overall accuracy of thermal to visual face recognition by transferring the knowledge gets increased to 94.32% from 89.3% on RGB-D-T dataset and from 81.54% to 90.33% on UND-Xl dataset.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Thermal to Visual Face Recognition using Transfer Learning\",\"authors\":\"Yaswanth Gavini, B. Mehtre, A. Agarwal\",\"doi\":\"10.1109/ISBA.2019.8778474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-modality face recognition refers to the matching of face images between different modalities and is done usually by taking visual images as source and one of the other modalities as a target. Performing facial recognition between thermal to visual is a tough task because of nonlinear spectral characteristics of thermal and visual images. However, this is a desirable requirement for night-time security applications and military surveillance. In this paper, we propose a method to improve the thermal classifier accuracy by using transfer learning and as a result, the accuracy of thermal to visual face recognition gets increased. The proposed method is tested on RGB-D-T dataset (45900 images) and UND-Xl collection (4584 images). Experimental results show that the overall accuracy of thermal to visual face recognition by transferring the knowledge gets increased to 94.32% from 89.3% on RGB-D-T dataset and from 81.54% to 90.33% on UND-Xl dataset.\",\"PeriodicalId\":270033,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2019.8778474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal to Visual Face Recognition using Transfer Learning
Inter-modality face recognition refers to the matching of face images between different modalities and is done usually by taking visual images as source and one of the other modalities as a target. Performing facial recognition between thermal to visual is a tough task because of nonlinear spectral characteristics of thermal and visual images. However, this is a desirable requirement for night-time security applications and military surveillance. In this paper, we propose a method to improve the thermal classifier accuracy by using transfer learning and as a result, the accuracy of thermal to visual face recognition gets increased. The proposed method is tested on RGB-D-T dataset (45900 images) and UND-Xl collection (4584 images). Experimental results show that the overall accuracy of thermal to visual face recognition by transferring the knowledge gets increased to 94.32% from 89.3% on RGB-D-T dataset and from 81.54% to 90.33% on UND-Xl dataset.