重力驱动微流体热流传感器的设计与仿真

Antti-Juhana Maki, A. Kontunen, Tomi Ryynänen, J. Verho, J. Kreutzer, J. Lekkala, P. Kallio
{"title":"重力驱动微流体热流传感器的设计与仿真","authors":"Antti-Juhana Maki, A. Kontunen, Tomi Ryynänen, J. Verho, J. Kreutzer, J. Lekkala, P. Kallio","doi":"10.1109/NEMS.2016.7758214","DOIUrl":null,"url":null,"abstract":"Gravity-driven flow is an attractive approach to develop simpler microfluidic systems. Because clogged microchannels could easily lead to fatal operational failures, it is crucial to monitor flow rate in these systems. Therefore, we propose here for the first time a numerical model that combines a calorimetric flow sensor and a gravity-driven system. With the validated model, we studied the flow behavior in a gravity-driven system. Furthermore, we were able to improve the sensitivity of the measurement based on simulation results. This demonstrates, how the model could be used as an effective optimization tool in the gravity-driven system including calorimetric flow measurement.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"374 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of a thermal flow sensor for gravity-driven microfluidic applications\",\"authors\":\"Antti-Juhana Maki, A. Kontunen, Tomi Ryynänen, J. Verho, J. Kreutzer, J. Lekkala, P. Kallio\",\"doi\":\"10.1109/NEMS.2016.7758214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravity-driven flow is an attractive approach to develop simpler microfluidic systems. Because clogged microchannels could easily lead to fatal operational failures, it is crucial to monitor flow rate in these systems. Therefore, we propose here for the first time a numerical model that combines a calorimetric flow sensor and a gravity-driven system. With the validated model, we studied the flow behavior in a gravity-driven system. Furthermore, we were able to improve the sensitivity of the measurement based on simulation results. This demonstrates, how the model could be used as an effective optimization tool in the gravity-driven system including calorimetric flow measurement.\",\"PeriodicalId\":150449,\"journal\":{\"name\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2016.7758214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重力驱动流是一种有吸引力的方法来开发更简单的微流体系统。由于堵塞的微通道很容易导致致命的操作故障,因此监测这些系统的流量至关重要。因此,我们在这里首次提出了一个结合了量热流量传感器和重力驱动系统的数值模型。利用验证的模型,研究了重力驱动系统中的流动特性。此外,基于仿真结果,我们能够提高测量的灵敏度。这表明,该模型可以作为一个有效的优化工具,在重力驱动系统,包括热流量测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of a thermal flow sensor for gravity-driven microfluidic applications
Gravity-driven flow is an attractive approach to develop simpler microfluidic systems. Because clogged microchannels could easily lead to fatal operational failures, it is crucial to monitor flow rate in these systems. Therefore, we propose here for the first time a numerical model that combines a calorimetric flow sensor and a gravity-driven system. With the validated model, we studied the flow behavior in a gravity-driven system. Furthermore, we were able to improve the sensitivity of the measurement based on simulation results. This demonstrates, how the model could be used as an effective optimization tool in the gravity-driven system including calorimetric flow measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信