Antti-Juhana Maki, A. Kontunen, Tomi Ryynänen, J. Verho, J. Kreutzer, J. Lekkala, P. Kallio
{"title":"重力驱动微流体热流传感器的设计与仿真","authors":"Antti-Juhana Maki, A. Kontunen, Tomi Ryynänen, J. Verho, J. Kreutzer, J. Lekkala, P. Kallio","doi":"10.1109/NEMS.2016.7758214","DOIUrl":null,"url":null,"abstract":"Gravity-driven flow is an attractive approach to develop simpler microfluidic systems. Because clogged microchannels could easily lead to fatal operational failures, it is crucial to monitor flow rate in these systems. Therefore, we propose here for the first time a numerical model that combines a calorimetric flow sensor and a gravity-driven system. With the validated model, we studied the flow behavior in a gravity-driven system. Furthermore, we were able to improve the sensitivity of the measurement based on simulation results. This demonstrates, how the model could be used as an effective optimization tool in the gravity-driven system including calorimetric flow measurement.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"374 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of a thermal flow sensor for gravity-driven microfluidic applications\",\"authors\":\"Antti-Juhana Maki, A. Kontunen, Tomi Ryynänen, J. Verho, J. Kreutzer, J. Lekkala, P. Kallio\",\"doi\":\"10.1109/NEMS.2016.7758214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravity-driven flow is an attractive approach to develop simpler microfluidic systems. Because clogged microchannels could easily lead to fatal operational failures, it is crucial to monitor flow rate in these systems. Therefore, we propose here for the first time a numerical model that combines a calorimetric flow sensor and a gravity-driven system. With the validated model, we studied the flow behavior in a gravity-driven system. Furthermore, we were able to improve the sensitivity of the measurement based on simulation results. This demonstrates, how the model could be used as an effective optimization tool in the gravity-driven system including calorimetric flow measurement.\",\"PeriodicalId\":150449,\"journal\":{\"name\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2016.7758214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and simulation of a thermal flow sensor for gravity-driven microfluidic applications
Gravity-driven flow is an attractive approach to develop simpler microfluidic systems. Because clogged microchannels could easily lead to fatal operational failures, it is crucial to monitor flow rate in these systems. Therefore, we propose here for the first time a numerical model that combines a calorimetric flow sensor and a gravity-driven system. With the validated model, we studied the flow behavior in a gravity-driven system. Furthermore, we were able to improve the sensitivity of the measurement based on simulation results. This demonstrates, how the model could be used as an effective optimization tool in the gravity-driven system including calorimetric flow measurement.