基于隐半马尔可夫模型的滚动轴承健康阶段划分及剩余使用寿命预测

Hong-Ci Wu, Zhenxing Liu, Yong Zhang, Ying Zheng, Cong Tang
{"title":"基于隐半马尔可夫模型的滚动轴承健康阶段划分及剩余使用寿命预测","authors":"Hong-Ci Wu, Zhenxing Liu, Yong Zhang, Ying Zheng, Cong Tang","doi":"10.1109/CCDC52312.2021.9601903","DOIUrl":null,"url":null,"abstract":"Health stages division and Remaining Useful Life (RUL) prediction are two important parts in safety study of rolling element bearings. In this paper, the Hidden Semi-Markov Model (HSMM) is proposed to divide the degradation stages of rolling element bearings. Firstly, we extract the root mean square feature from the original vibration signal, then utilize Viterbi algorithm to divide the degradation stages. Secondly, Fault occurrence time is determined according to the degradation stage and RUL is predicted with HSMM. In order to verify the effectiveness of this method, IEE-PHM-2012 challenge data sets are adopted and the comparison with the existing methods is carried out.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Health stages division and remaining useful life prediction of rolling element bearings based on hidden semi-Markov model\",\"authors\":\"Hong-Ci Wu, Zhenxing Liu, Yong Zhang, Ying Zheng, Cong Tang\",\"doi\":\"10.1109/CCDC52312.2021.9601903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health stages division and Remaining Useful Life (RUL) prediction are two important parts in safety study of rolling element bearings. In this paper, the Hidden Semi-Markov Model (HSMM) is proposed to divide the degradation stages of rolling element bearings. Firstly, we extract the root mean square feature from the original vibration signal, then utilize Viterbi algorithm to divide the degradation stages. Secondly, Fault occurrence time is determined according to the degradation stage and RUL is predicted with HSMM. In order to verify the effectiveness of this method, IEE-PHM-2012 challenge data sets are adopted and the comparison with the existing methods is carried out.\",\"PeriodicalId\":143976,\"journal\":{\"name\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC52312.2021.9601903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9601903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

滚动轴承健康阶段划分和剩余使用寿命预测是滚动轴承安全性研究的两个重要组成部分。本文提出了隐半马尔可夫模型(HSMM)来划分滚动轴承的退化阶段。首先提取原始振动信号的均方根特征,然后利用Viterbi算法对退化阶段进行划分。其次,根据退化阶段确定故障发生时间,并利用HSMM预测RUL;为了验证该方法的有效性,采用ieee - phm -2012挑战数据集,并与现有方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Health stages division and remaining useful life prediction of rolling element bearings based on hidden semi-Markov model
Health stages division and Remaining Useful Life (RUL) prediction are two important parts in safety study of rolling element bearings. In this paper, the Hidden Semi-Markov Model (HSMM) is proposed to divide the degradation stages of rolling element bearings. Firstly, we extract the root mean square feature from the original vibration signal, then utilize Viterbi algorithm to divide the degradation stages. Secondly, Fault occurrence time is determined according to the degradation stage and RUL is predicted with HSMM. In order to verify the effectiveness of this method, IEE-PHM-2012 challenge data sets are adopted and the comparison with the existing methods is carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信