{"title":"硫相关物质在氧还原反应中的作用","authors":"Dan Xu, W. Wu","doi":"10.5772/INTECHOPEN.78647","DOIUrl":null,"url":null,"abstract":"Heteroatom (metal and nonmetal) doping is essential to achieve excellent oxygen reduc- tion reaction (ORR) activity of carbon materials. Among the heteroatoms that have been studied to date, sulfur (S) doping , including metal sulfides and sulfur atoms, has attracted tremendous attention. Since S-doping can modify spin density distributions around the metal centers as well as the synergistic effect between S and other doped heteroatoms, the S - C bond and metal sulfides can function as important ORR active sites. Furthermore, the S-doped hybrid sample shows a small charge-transfer resistance. Therefore, S-doping contributes to the superior ORR performance. This chapter describes the recent advance-ments of S-doped carbon materials, and their development in the area of ORR with regard to components, structures, and their ORR activities of S-related species.","PeriodicalId":416989,"journal":{"name":"Chalcogen Chemistry","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Role of Sulfur-Related Species in Oxygen Reduction Reactions\",\"authors\":\"Dan Xu, W. Wu\",\"doi\":\"10.5772/INTECHOPEN.78647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heteroatom (metal and nonmetal) doping is essential to achieve excellent oxygen reduc- tion reaction (ORR) activity of carbon materials. Among the heteroatoms that have been studied to date, sulfur (S) doping , including metal sulfides and sulfur atoms, has attracted tremendous attention. Since S-doping can modify spin density distributions around the metal centers as well as the synergistic effect between S and other doped heteroatoms, the S - C bond and metal sulfides can function as important ORR active sites. Furthermore, the S-doped hybrid sample shows a small charge-transfer resistance. Therefore, S-doping contributes to the superior ORR performance. This chapter describes the recent advance-ments of S-doped carbon materials, and their development in the area of ORR with regard to components, structures, and their ORR activities of S-related species.\",\"PeriodicalId\":416989,\"journal\":{\"name\":\"Chalcogen Chemistry\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chalcogen Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.78647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogen Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Role of Sulfur-Related Species in Oxygen Reduction Reactions
Heteroatom (metal and nonmetal) doping is essential to achieve excellent oxygen reduc- tion reaction (ORR) activity of carbon materials. Among the heteroatoms that have been studied to date, sulfur (S) doping , including metal sulfides and sulfur atoms, has attracted tremendous attention. Since S-doping can modify spin density distributions around the metal centers as well as the synergistic effect between S and other doped heteroatoms, the S - C bond and metal sulfides can function as important ORR active sites. Furthermore, the S-doped hybrid sample shows a small charge-transfer resistance. Therefore, S-doping contributes to the superior ORR performance. This chapter describes the recent advance-ments of S-doped carbon materials, and their development in the area of ORR with regard to components, structures, and their ORR activities of S-related species.