{"title":"走向数学运算语义","authors":"D. Turi, G. Plotkin","doi":"10.1109/lics.1997.614955","DOIUrl":null,"url":null,"abstract":"We present a categorical theory of 'well-behaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets the following for free: an operational model satisfying the rules and a canonical, internally fully abstract denotational model which satisfies the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of well-behaved rules for structural operational semantics, such as GSOS.","PeriodicalId":272903,"journal":{"name":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"407","resultStr":"{\"title\":\"Towards a mathematical operational semantics\",\"authors\":\"D. Turi, G. Plotkin\",\"doi\":\"10.1109/lics.1997.614955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a categorical theory of 'well-behaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets the following for free: an operational model satisfying the rules and a canonical, internally fully abstract denotational model which satisfies the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of well-behaved rules for structural operational semantics, such as GSOS.\",\"PeriodicalId\":272903,\"journal\":{\"name\":\"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"407\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/lics.1997.614955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/lics.1997.614955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a categorical theory of 'well-behaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets the following for free: an operational model satisfying the rules and a canonical, internally fully abstract denotational model which satisfies the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of well-behaved rules for structural operational semantics, such as GSOS.