{"title":"进一步的球对称解","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0018","DOIUrl":null,"url":null,"abstract":"We obtain the interior Schwarzschild solution; the stellar structure equations (Tolman-Oppenheimer-Volkoff); the Reissner-Nordstrom metric (charged black hole) and the de Sitter-Schwarzschild metric. These both illustrate how the field equation is tackled in non-vacuum cases, and bring out some of the physics of stars, electromagnetic fields and the cosmological constant.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further spherically symmetric solutions\",\"authors\":\"A. Steane\",\"doi\":\"10.1093/oso/9780192895646.003.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the interior Schwarzschild solution; the stellar structure equations (Tolman-Oppenheimer-Volkoff); the Reissner-Nordstrom metric (charged black hole) and the de Sitter-Schwarzschild metric. These both illustrate how the field equation is tackled in non-vacuum cases, and bring out some of the physics of stars, electromagnetic fields and the cosmological constant.\",\"PeriodicalId\":365636,\"journal\":{\"name\":\"Relativity Made Relatively Easy Volume 2\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Relativity Made Relatively Easy Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192895646.003.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We obtain the interior Schwarzschild solution; the stellar structure equations (Tolman-Oppenheimer-Volkoff); the Reissner-Nordstrom metric (charged black hole) and the de Sitter-Schwarzschild metric. These both illustrate how the field equation is tackled in non-vacuum cases, and bring out some of the physics of stars, electromagnetic fields and the cosmological constant.