{"title":"加性组合学中的非延展性代码","authors":"Divesh Aggarwal, Y. Dodis, Shachar Lovett","doi":"10.1145/2591796.2591804","DOIUrl":null,"url":null,"abstract":"Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional errorcorrection (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. Although such codes do not exist if the family of \"tampering functions\" F is completely unrestricted, they are known to exist for many broad tampering families F. One such natural family is the family of tampering functions in the so called split-state model. Here the message m is encoded into two shares L and R, and the attacker is allowed to arbitrarily tamper with L and R individually. The split-state tampering arises in many realistic applications, such as the design of non-malleable secret sharing schemes, motivating the question of designing efficient non-malleable codes in this model. Prior to this work, non-malleable codes in the splitstate model received considerable attention in the literature, but were constructed either (1) in the random oracle model [16], or (2) relied on advanced cryptographic assumptions (such as non-interactive zero-knowledge proofs and leakage-resilient encryption) [26], or (3) could only encode 1-bit messages [14]. As our main result, we build the first efficient, multi-bit, information-theoretically-secure non-malleable code in the split-state model. The heart of our construction uses the following new property of the inner-product function ⟨L;R⟩ over the vector space Fnp (for a prime p and large enough dimension n): if L and R are uniformly random over Fnp, and f, g: Fnp → Fnp are two arbitrary functions on L and R, then the joint distribution (⟨L;R⟩, ⟨f(L), g(R)⟩) is \"close\" to the convex combination of \"affine distributions\" {(U, aU + b) --- a, b ε Fp}, where U is uniformly random in Fp. In turn, the proof of this surprising property of the inner product function critically relies on some results from additive combinatorics, including the so called Quasi-polynomial Freiman-Ruzsa Theorem which was recently established by Sanders [29] as a step towards resolving the Polynomial Freiman-Ruzsa conjecture [21].","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"Non-malleable codes from additive combinatorics\",\"authors\":\"Divesh Aggarwal, Y. Dodis, Shachar Lovett\",\"doi\":\"10.1145/2591796.2591804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional errorcorrection (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. Although such codes do not exist if the family of \\\"tampering functions\\\" F is completely unrestricted, they are known to exist for many broad tampering families F. One such natural family is the family of tampering functions in the so called split-state model. Here the message m is encoded into two shares L and R, and the attacker is allowed to arbitrarily tamper with L and R individually. The split-state tampering arises in many realistic applications, such as the design of non-malleable secret sharing schemes, motivating the question of designing efficient non-malleable codes in this model. Prior to this work, non-malleable codes in the splitstate model received considerable attention in the literature, but were constructed either (1) in the random oracle model [16], or (2) relied on advanced cryptographic assumptions (such as non-interactive zero-knowledge proofs and leakage-resilient encryption) [26], or (3) could only encode 1-bit messages [14]. As our main result, we build the first efficient, multi-bit, information-theoretically-secure non-malleable code in the split-state model. The heart of our construction uses the following new property of the inner-product function ⟨L;R⟩ over the vector space Fnp (for a prime p and large enough dimension n): if L and R are uniformly random over Fnp, and f, g: Fnp → Fnp are two arbitrary functions on L and R, then the joint distribution (⟨L;R⟩, ⟨f(L), g(R)⟩) is \\\"close\\\" to the convex combination of \\\"affine distributions\\\" {(U, aU + b) --- a, b ε Fp}, where U is uniformly random in Fp. In turn, the proof of this surprising property of the inner product function critically relies on some results from additive combinatorics, including the so called Quasi-polynomial Freiman-Ruzsa Theorem which was recently established by Sanders [29] as a step towards resolving the Polynomial Freiman-Ruzsa conjecture [21].\",\"PeriodicalId\":123501,\"journal\":{\"name\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591796.2591804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional errorcorrection (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. Although such codes do not exist if the family of "tampering functions" F is completely unrestricted, they are known to exist for many broad tampering families F. One such natural family is the family of tampering functions in the so called split-state model. Here the message m is encoded into two shares L and R, and the attacker is allowed to arbitrarily tamper with L and R individually. The split-state tampering arises in many realistic applications, such as the design of non-malleable secret sharing schemes, motivating the question of designing efficient non-malleable codes in this model. Prior to this work, non-malleable codes in the splitstate model received considerable attention in the literature, but were constructed either (1) in the random oracle model [16], or (2) relied on advanced cryptographic assumptions (such as non-interactive zero-knowledge proofs and leakage-resilient encryption) [26], or (3) could only encode 1-bit messages [14]. As our main result, we build the first efficient, multi-bit, information-theoretically-secure non-malleable code in the split-state model. The heart of our construction uses the following new property of the inner-product function ⟨L;R⟩ over the vector space Fnp (for a prime p and large enough dimension n): if L and R are uniformly random over Fnp, and f, g: Fnp → Fnp are two arbitrary functions on L and R, then the joint distribution (⟨L;R⟩, ⟨f(L), g(R)⟩) is "close" to the convex combination of "affine distributions" {(U, aU + b) --- a, b ε Fp}, where U is uniformly random in Fp. In turn, the proof of this surprising property of the inner product function critically relies on some results from additive combinatorics, including the so called Quasi-polynomial Freiman-Ruzsa Theorem which was recently established by Sanders [29] as a step towards resolving the Polynomial Freiman-Ruzsa conjecture [21].