包络类的泊松化和通用压缩

Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh
{"title":"包络类的泊松化和通用压缩","authors":"Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh","doi":"10.1109/ISIT.2014.6875158","DOIUrl":null,"url":null,"abstract":"Poisson sampling is a method for eliminating dependence among symbols in a random sequence. It helps improve algorithm design, strengthen bounds, and simplify proofs. We relate the redundancy of fixed-length and Poisson-sampled sequences, use this result to derive a simple formula for the redundancy of general envelope classes, and apply this formula to obtain simple and tight bounds on the redundancy of power-law and exponential envelope classes, in particular answering a question posed in [1] about power-law envelopes.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Poissonization and universal compression of envelope classes\",\"authors\":\"Jayadev Acharya, Ashkan Jafarpour, A. Orlitsky, A. Suresh\",\"doi\":\"10.1109/ISIT.2014.6875158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poisson sampling is a method for eliminating dependence among symbols in a random sequence. It helps improve algorithm design, strengthen bounds, and simplify proofs. We relate the redundancy of fixed-length and Poisson-sampled sequences, use this result to derive a simple formula for the redundancy of general envelope classes, and apply this formula to obtain simple and tight bounds on the redundancy of power-law and exponential envelope classes, in particular answering a question posed in [1] about power-law envelopes.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

泊松抽样是一种消除随机序列中符号间相关性的方法。它有助于改进算法设计,加强界,简化证明。我们将定长序列和泊松采样序列的冗余联系起来,利用这一结果推导出一般包络类的冗余的一个简单公式,并应用该公式得到幂律包络类和指数包络类的冗余的简单而严密的界,特别是回答了[1]中关于幂律包络的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poissonization and universal compression of envelope classes
Poisson sampling is a method for eliminating dependence among symbols in a random sequence. It helps improve algorithm design, strengthen bounds, and simplify proofs. We relate the redundancy of fixed-length and Poisson-sampled sequences, use this result to derive a simple formula for the redundancy of general envelope classes, and apply this formula to obtain simple and tight bounds on the redundancy of power-law and exponential envelope classes, in particular answering a question posed in [1] about power-law envelopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信