Zhang Zhun, He Wei, Luo Sheng, Jianmin Cao, Qingyang Wu
{"title":"基于65nm CMOS技术的SEE位置电荷共享影响研究","authors":"Zhang Zhun, He Wei, Luo Sheng, Jianmin Cao, Qingyang Wu","doi":"10.1109/ICCPS.2015.7454144","DOIUrl":null,"url":null,"abstract":"This paper investigates a heavy ion impacts different locations dependency of charge sharing in 65nm CMOS technology. Three new types structures of charge sharing mechanism (NMOS-NMOS, PMOS-PMOS and NMOS-PMOS) are designed to evaluate the influence of single event effect, and TCAD simulation results reveal that the device sensitive node can collect a large number of charges when the heavy ion impacting location is closer to drain contact for NMOS, and when the location is closer to source contact for PMOS, the PMOS transistor sensitive node can collect much more charges. And the charge sharing will affect the reliability when the ion strikes the center between the two transistors no matter to PMOS or NMOS. The charge sharing influences of three types structures are compared, and it can be a guidance to improve the reliability of devices.","PeriodicalId":319991,"journal":{"name":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on the influence of charge sharing for SEE locations based on 65nm CMOS technology\",\"authors\":\"Zhang Zhun, He Wei, Luo Sheng, Jianmin Cao, Qingyang Wu\",\"doi\":\"10.1109/ICCPS.2015.7454144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a heavy ion impacts different locations dependency of charge sharing in 65nm CMOS technology. Three new types structures of charge sharing mechanism (NMOS-NMOS, PMOS-PMOS and NMOS-PMOS) are designed to evaluate the influence of single event effect, and TCAD simulation results reveal that the device sensitive node can collect a large number of charges when the heavy ion impacting location is closer to drain contact for NMOS, and when the location is closer to source contact for PMOS, the PMOS transistor sensitive node can collect much more charges. And the charge sharing will affect the reliability when the ion strikes the center between the two transistors no matter to PMOS or NMOS. The charge sharing influences of three types structures are compared, and it can be a guidance to improve the reliability of devices.\",\"PeriodicalId\":319991,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Problem-Solving (ICCP)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Problem-Solving (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2015.7454144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2015.7454144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on the influence of charge sharing for SEE locations based on 65nm CMOS technology
This paper investigates a heavy ion impacts different locations dependency of charge sharing in 65nm CMOS technology. Three new types structures of charge sharing mechanism (NMOS-NMOS, PMOS-PMOS and NMOS-PMOS) are designed to evaluate the influence of single event effect, and TCAD simulation results reveal that the device sensitive node can collect a large number of charges when the heavy ion impacting location is closer to drain contact for NMOS, and when the location is closer to source contact for PMOS, the PMOS transistor sensitive node can collect much more charges. And the charge sharing will affect the reliability when the ion strikes the center between the two transistors no matter to PMOS or NMOS. The charge sharing influences of three types structures are compared, and it can be a guidance to improve the reliability of devices.